
This work was published as

A. Hartl, T. Zseby and J. Fabini, "BeaconBlocks: Augmenting Proof-of-Stake with On-Chain Time
Synchronization," 2019 IEEE International Conference on Blockchain (Blockchain), 2019, pp. 353-360.

DOI: 10.1109/Blockchain.2019.00055

© IEEE

https://doi.org/10.1109/Blockchain.2019.00055

BeaconBlocks: Augmenting Proof-of-Stake with

On-Chain Time Synchronization

Alexander Hartl

Institute of Telecommunications

TU Wien

Vienna, Austria

alexander.hartl@tuwien.ac.at

Tanja Zseby

Institute of Telecommunications

TU Wien

Vienna, Austria

tanja.zseby@tuwien.ac.at

Joachim Fabini

Institute of Telecommunications

TU Wien

Vienna, Austria

joachim.fabini@tuwien.ac.at

Abstract—Blockchain protocols based on Proof-of-Stake (PoS)
algorithms aim to provide an alternative to the energy-consuming
Proof-of-Work mining procedure. Following a PoS algorithm,
nodes have to agree on the miner next eligible to contribute a
block and on the point in time he is allowed to broadcast it. The
latter requirement raises to the need for synchronous clocks.

In this paper we describe BeaconBlocks, a new scheme for
constructing PoS protocols. A major difference to former work
is incorporating time synchronization as an essential element of
the protocol itself, gaining independence of the nodes’ clocks and
allowing the protocol to resist attacks on clock synchronization
infrastructure. To this end, we describe both a mechanism for
obtaining the correct time during node startup and for retaining
synchronicity of estimated time during a node’s lifetime.

In contrast to prior work, our approach for miner selection
exhibits an interleaved unslotted structure. We show that fairness
is achieved when miners follow our scheme and we provide a
discussion of attack possibilities, allowing developers to choose
secure parameters when adopting the scheme.

Index Terms—blockchain, time synchronization, proof-of-stake

I. INTRODUCTION

Bitcoin [1] achieves consensus in a truly elegant way. Per-

forming a technique known as Proof-of-Work (PoW), network

nodes solve cryptopuzzles to authorize block creation, ideally

making influence on the network proportional to the amount

of capital each participant is willing to invest.

The huge demand for electric power that comes along with

PoW is the source of heated debates. Not only does it cause

the environmental balance of any protocol based on PoW to

be catastrophic, it also leads to substantial amounts of money

leaving the network in form of electricity costs, eventually

increasing the costs for everyone using it.

It therefore comes as no surprise that soon after the inven-

tion of bitcoin, protocol designers were looking for ways to

combine the advantages blockchains yield with less energy-

consuming consensus techniques. The most well-known ap-

proach is Proof-of-Stake (PoS).

PoS in the classical definition means that influence on the

network each participant has, measured as the targeted number

of blocks this participant is permitted to contribute, is made

proportional to the amount of capital he currently holds on

the blockchain. To formulate our findings in the most general

framework possible, however, we consider PoS in a more

general sense. Hence, we regard PoS as the targeted number

of contributed blocks being derived using some determinate

function from previous data on the blockchain. This definition

generalizes the above definition of classical PoS but allows a

variety of other methods, which might be beneficial in various

respects. Due to the generality of this definition, we adopt the

term miner for referring to a node that is actively contributing

blocks, despite its usual use in PoW protocols. Accordingly,

we term the targeted number of contributed blocks for a miner,

relative to the total block count, his associated mining power.

In this work, we describe a new scheme for obtaining PoS

and investigate its security. To this end, we investigate several

attack scenarios and discuss their impact on security, allowing

proper protocol parametrization in practical deployments.

Chain-based PoS [2], as described in this paper, is a

stochastic consensus technique and is also known as eventual-

consensus PoS [3]. In essence, it can be considered a form of

repeated decentralized lottery, the winners being rewarded by

being permitted to create blocks. Unlike recent approaches like

[4, 5] we use an unslotted approach loosely comparable to the

Exp-algorithm described in [6]. Given a certain recent block,

every miner draws a number pseudorandomly, which serves as

delay that is imposed on the broadcasting time of this miner’s

block. Hence, the miner with the lowest random number wins

by having his block accepted first by the network. In contrast to

former methods, our scheme exhibits an interleaved structure,

yielding security benefits compared to methods as used in [6].

The major novel idea we present in this paper, however, is

performing chain and time synchronization in a joint manner,

thus avoiding the need for external mechanisms to keep an

accurate clock throughout the mining process.

Due to the basic functioning of PoS protocols, a common

notion of time is crucial for secure protocol operation. How-

ever, currently used clock synchronization techniques have

shown to yield substantial drawbacks in terms of security [7].

Depending on how strong an adversary’s incentives are, even

the signal from GPS satellites cannot be trusted as reliable

source of time information [8]. Google’s Roughtime protocol1

comes closest to the security properties we desire when

building a blockchain protocol on top of it, but also fails to

1https://roughtime.googlesource.com/roughtime

https://roughtime.googlesource.com/roughtime

provide the desired degree of decentralization. Indeed, due

to its stochastic functioning, chain-based PoS can achieve

a substantial degree of decentralization. Basing chain-based

PoS on traditional clock synchronization, querying just a few

centralized time servers, would thus severely harm decentral-

ization and thereby the protocol’s security.

Hence, in this paper we propose a mechanism for integrating

time synchronization in the blockchain protocol itself. The

main mechanism we use for this purpose retains synchronicity

of time during a node’s lifetime. An administrator is expected

to give his client software an estimate of current time during

software startup and the client remains synchronized ever after

using the network, much like grid-synchronized clocks remain

synchronized using the electric power grid.

Providing a correct timestamp when powering up appears to

be a substantially easier task than guaranteeing a correct clock

throughout the whole lifetime of the mining process. Yet, to

cover a wide range of application scenarios, we finally also

describe a mechanism for obtaining time information during

the startup phase if no reliable clock is available.

II. RELATED WORK

The idea of relying on stake distribution on the blockchain

itself to eliminate the energy-consuming mining process was

born soon after the invention of bitcoin [1] and several PoS

protocols [9, 10, 11, 12] were implemented. For these early

approaches a large number of attacks has been found [13, 14],

allowing the protocols to be attacked with even small amounts

of stake. Recently, important work has been done on analyzing

blockchain security and improving it [15, 16, 17, 18, 3]. At

the same time, PoS protocols like [4] and [5] emerged in the

academic community, providing important new concepts and

extensive security evaluations in the framework of Universal

Composability (UC).

PoS methods mentioned above can all be subsumed under

the class of chain-based [2] or eventual-consensus [3] PoS.

Apart from these methods, blockchain protocols deploying

the older theory of Byzantine Fault Tolerance (BFT) were

developed [19, 20, 21, 22, 23], requiring tradeoffs known as

the CAP theorem [24].

In this paper we focus on time synchronization. Almost all

protocols devised so far either assume synchronized clocks

to be given relying, e.g., on external clock synchronization

protocols, or transition to a different notion of time which is

agreed upon using (different) consensus techniques.

An exception worth mentioning is the NEM [12] blockchain

which features built-in clock synchronization by performing

NTP-like synchronization procedures against randomly se-

lected network peers. This clock synchronization procedure

can be considered a consensus procedure on its own, which is

executed before the actual chain synchronization takes place.

For assessing the protocol’s security, both mechanisms have

to be considered. In particular, unlike our scheme, being

performed independently, clock synchronization in this case

has no access to the Sybil attack prevention which is inherent

to blockchains.

TABLE I
MOST IMPORTANT NOTATION.

t ∈ R Real time.
τRTC(t) ∈ R A node’s real-time clock.
τMon(t) ∈ R A node’s monotonic clock.

δ ∈ R A node’s clock offset.
τ̃(t) ∈ R A node’s estimated time (τ̃(t) = τMon(t) + δ).
σ(B) ∈ R Chain time at block B.

TB ∈ R
+ Average inter-block interval.

2ω ∈ N Stake delay.

∆ ∈ R
+ Time correction per block.

B A block.
ρ Public key identifying a miner.

qρ(B) ∈ [0, 1] ρ’s mining power after processing block B.

H(·) Cryptographic hash function with output length LH .
S Random seed for miner selection.
R Randomness obtained by signing S.

ks/kp Private/public key of the node executing Algorithm 1.

Interesting in the present context is also the work by Fan

et al. [25] who proposed a clock synchronization mechanism

secured by blockchain technology, particularly for use in the

Internet of Things. Compared to their approach, we do not

rely on a functioning blockchain to build on to achieve clock

synchronization, but instead integrate time synchronization as

a fundamental element of our PoS algorithm. However, a

technique like [25] might be used to extend our method to

increase accuracy of the time synchronization mechanism.

While borrowing some ideas from work mentioned above,

our method has major differences to all of them. It is composed

of the following components:

1) On-chain time synchronization: We introduce mecha-

nisms to recover time information from the blockchain itself,

obtaining a PoS algorithm without the need for external clock

synchronization and allowing the protocol to resist attacks on

clock synchronization infrastructure.

2) Interleaved unslotted PoS: Unlike prior work, we deploy

a new miner selection mechanism which uses neither the

concept of epochs nor that of timeslots. We describe how

miner selection works and show that fairness is achieved when

miners follow the protocol’s rules.

III. MINER SELECTION: AN INFORMAL DESCRIPTION

Blockchain protocols counter major attacks by making in-

fluence on the network proportional to “something expensive”.

Even though this statement is oversimplified, “something

expensive” can be identified as computational power in the

case of PoW and as on-chain capital in the case of classical

PoS. Influence on the network, on the other hand, can be

quantified by the number of blocks one is able to create in

a given period of time or, in other words, by the probability

of being permitted to contribute a block at a specific time.

Constructing a PoS protocol therefore essentially means

constructing a repeated decentralized lottery scheme, which

satisfies predetermined winning probabilities for miners.

Digital signatures constitute a major component of our

scheme. We therefore directly identify a miner by his public

key ρ. Similar to previous work [4, 19], we require the

used digital signature scheme to be unique, ensuring that a

miner can find exactly one signature string for a given signed

message. We use a cryptographic hash function H , producing

an output string of length LH bits and assume a defined

encoding, so that the output of H can directly be interpreted as

an integer in 1, . . . , 2LH . Finally, S denotes a random seed for

miner selection varying over time (see Section V for details).

For classical PoS, the number of blocks, a miner is allowed

to contribute, is determined by relative on-chain capital after

the processing of a certain block. Hence, if Kρ denotes ρ’s

capital after the processing of block B, and M denotes the

set of all miners, the quotient qρ(B) = Kρ/
∑

ρ̃∈M Kρ̃ is

used for determining ρ’s probability of contributing a block

at a certain later point. However, taking a closer look, for the

functioning of a PoS method it is irrelevant if this stake ratio,

or any other function of data on the blockchain, is what is used

for this purpose. In the following, we will therefore assume a

function qρ(B) ∈ [0, 1], so that
∑

ρ∈M qρ(B) = 1, to be given,

and refer to qρ(B) with the neutral term “mining power”.

In the light of the above considerations, the task of our

scheme has to be to dictate when miners are eligible to

contribute blocks. This time is specified relative to a recent

block. Hence, for every block, each miner is assigned a lag

time, which has to pass before being allowed to create a

block, pseudorandomly. For reasons which will become evi-

dent presently, ρ’s lag time will be obtained proportional to the

value − 1
qρ(B) ln(2

−LHH(R)), where R is a signature for seed

S under public key ρ. By incorporating a signing operation,

each miner obtains a different time for creating his block.

The prefactor 1/qρ(B) has an intuitive appeal. Indeed, the

larger the mining power, the sooner a block will be accepted

by the network. The remaining part − ln(2−LHH(R)), on the

other hand, is used for generating exponentially distributed

random numbers with mean 1.

A peculiarity about our method is not only allowing the

block with the lowest lag time to extend the chain, but

potentially also blocks arriving later, linking them one after

the other. The result is an interleaved structure as depicted

in Fig. 1. In this figure, both miner 1 and miner 2 are

able to extend the blockchain based on block A. For both

miners different lag times are computed, after which they are

able to broadcast blocks C and F, respectively. We will say

throughout this paper that blocks C and F stem from block

A. In this example, we allow both miners to extend the chain

subsequently. The figure also shows that due to interleaving,

neither C nor F is the first to extend the blockchain after A,

but a block B stemming from a block preceding A.

A final issue, which has to be considered, is as follows.

Facing a potentially unlimited number of miners, the approach

as described above would lead us to the ill-fated situation of

time

A B C D E F

Fig. 1. An exemplary block sequence.

the block rate rising exponentially with time. We therefore

constrain the lag time, measured as number of blocks having

arrived meanwhile, by a network parameter ω ∈ N and, to

obtain an average inter-block interval of TB , scale the lag

time to − ωTB

qρ(B) ln(2
−LHH(R)). In the example of Fig. 1, F

is then declined for ω < 5.
As a consequence of interleaving, mining power qρ(B) in

any block might be used in any of ω consecutive blocks. It

shall be emphasized, however, that our method is not epoch-

based in the sense of other recent algorithms like, e.g., [4].

Note, furthermore, that while the interleaved structure is

used for determining the order in which miners are eligible to

create blocks, the order of transactions is given by the resulting

linear order of blocks, which is illustrated as a chain-shaped

line in Fig. 1. In the example of this figure, block F must not

include transactions spending outputs that were already spent

in block E or preceding blocks.

IV. THE CLOCK IN POS

Trust assumptions for blockchain protocols differ signifi-

cantly from traditional systems. A time synchronization mech-

anism based on a PoS blockchain, hence functioning under the

same trust assumptions, has important use cases:

1) Unlike PoW, in PoS there is no natural mechanism

limiting block creation. Hence, we artificially have to

introduce delays for broadcasting blocks, giving rise to

the necessity of a common clock.

As a consequence, the clock becomes crucial for being

able to correctly select the best chain available. When

performing time synchronization based on a blockchain

as described in this paper, hence, both proper chain

synchronization depends on time synchronization and

time synchronization depends on chain synchronization,

requiring a joint synchronization mechanism.

2) Certain types of transactions and smart contracts exe-

cuted on blockchains depend on a common clock. In par-

ticular, most current cryptocurrencies allow transactions

to be prevented from execution before a certain date

and time. Hence, a common clock is necessary to make

all network nodes agree on the set of transactions that

cannot yet be included in the blockchain. For example,

such transactions are of fundamental importance for

techniques like the lightning network2.

3) A clock synchronization technique that works under the

same trust assumptions as blockchains, and does not rely

on trusted centralized servers, might be used for various

purposes. For example, decentralized clock synchroniza-

tion might integrate into the usual clock synchronization

infrastructure gaining immunity against attacks on time

servers or on unauthenticated NTP messages.

In this paper we do not focus on this application sce-

nario. Adoption of the technique to meet requirements

of such applications with respect to, e.g., accuracy, is

thus left for further research.

2https://lightning.network/

https://lightning.network/

An adversary’s inability to arbitrarily influence a node’s

time is of fundamental importance for our application. How-

ever, it is important to note that (1) and (2) have substantially

lower accuracy requirements than many traditional clock syn-

chronization scenarios, NTP or PTP are used for.

In particular, for (1) the clock is used as a reference to

compare the arrival times of blocks to. Deviating clocks,

hence, have the same effect as increased block propagation

delays. Since the network has to be designed to withstand

the impact of block propagation to a certain extent, clock

deviations that are well below the network’s propagation

delays do not have a significant impact on the network.

A similar argument holds for (2). Since transactions can

only be processed by being included in blocks, precise timing

for when a transaction has to be accepted is not possible.

Hence, clock deviations that are well below the average inter-

block interval have no significant impact.

These very specific requirements justify a crude approach

for performing time synchronization in our case: Disregarding

any propagation delays of blocks, we can use blocks as

beacons that are seen by all network nodes at approximately

the same time and, hence, allow the nodes to deduce time

information from received blocks. To this end, every network

node is equipped with a monotonic clock τMon(t) ∈ R and a

real-time clock τRTC(t) ∈ R, where t ∈ R denotes the real

physical time as it is displayed on a wall clock.

The monotonic clock τMon(t) is guaranteed to advance

monotonically with time, but does not necessarily represent

wall clock time, i.e. there is a variable offset δ ∈ R, so that

τMon(t)+δ = t. As will be described in Section V, we assume

the absolute values of the monotonic clocks’ relative clock

drifts to be upper-bounded by a certain value. Our scheme

works by estimating δ. For the sake of notational brevity, we

abbreviate a node’s estimated time as τ̃(t) = τMon(t) + δ.

In addition to τMon(t), every network node has access to a

real-time clock τRTC(t) which can be used to query an estimate

of the wall clock time t. We do not make any assumptions

about the accuracy of a node’s real-time clock, but we assume

that the mining power-weighted median of the real-time clocks

of all nodes gives a reasonably good estimate of t.
Like all chain-based PoS blockchains, our scheme works

by imposing delays on block broadcasting, where delays can

be deduced from data on the blockchain. The sum of all

imposed delays therefore provides an estimate of the time

that has passed since the blockchain’s launch date, a network

parameter every node is aware of. Hence, by summing together

Propagation

delay

Select

next miner

Offset

+ +

+

+

-

-

Block

transmission time

Block delay

Carry over

from last block

Time

correction

Offset

correction

Fig. 3. Interaction of clocks.

all imposed delays up to the current block, we additionally

obtain a “chain time” σ ∈ R.

When a block is received, we would thus have in an ideal

world σ = τ̃(t) = τRTC(t) = t. Our scheme adjusts both the

offset δ and block broadcasting times to approach equality of

these different time sources. By correcting δ only by a small

amount for each block, we can prevent large fluctuations.

In more detail, when receiving a block, a node compares

τ̃(t) to σ, the time it expected the block to arrive at. A

block arriving early can be interpreted as τ̃(t) being too low.

Hence, the node slightly increases δ when a block arrives early.

Similarly, the node slightly decreases δ when the block arrives

late. Since every node sees the new block at roughly the same

time, the network becomes self-synchronizing in the sense that

every node has approximately the same time τ̃(t) ≈ σ.

However, without further measures, τ̃(t) would drift away

from the real time t. Hence, when creating a new block,

nodes also have to compare τ̃(t) to τRTC(t) and appropriately

adjust the time they broadcast the block. For example, when

τ̃(t) < τRTC(t), new blocks are advanced. Nodes thus receive

the blocks early and increase their δ, eventually reducing the

deviation between τ̃(t) and τRTC(t).
Fig. 3 depicts the interactions between a node’s clocks.

Starting from an offset value δ from the last block in the

middle of the figure, we obtain the estimated time τ̃(t) =
τMon(t) + δ. The transmission time of the next block is found

by using τ̃(t) as reference. However, this transmission time

is adjusted based on the deviation of τ̃(t) to τRTC(t). The

next miner is then determined as described in the previous

Section III and his block is received after having been delayed

by a random propagation delay. Compared to τ̃(t), the block

thus has a positive or negative block delay. This delay is used

to compute a correction value for the offset δ, which will be

used for the processing of the next block.

Fig. 2 shows how the time synchronization process proceeds

Miner 1

Miner 2

Miner 3

Miner 4
time

Miner broadcasts a block

Block expected wrt. miner's ()

Block expected wrt. real time ()

Block

Miner's correction of ()

Block Block Block

Miner's correction of ()

Fig. 2. An example of the time synchronization process.

Algorithm 1 Processing a block B = (h,D, a,R, ρ, s).

1: assert (H(B−1) = h) ∧ (D extends B−1) ∧ (1 ≤ a ≤ ω) ∧ verifyρ(S(B−a), R) ∧ verifyρ(h | D | a | R | ρ, s)
2: set δ(B)← δ(B−1)−∆ · sgn

(

τMon(t) + δ(B−1)− σ(B)
)

3: wait until τMon(t) ≥ σ(B)− δ(B−1)
4: UPDATETIP(B)

5: with (â, R̂, σ̂)← arg min(â,R̂,σ̂)∈P (B) {σ̂ | σ̂ > σ(B)} do

6: wait until τMon(t) ≥ σ̂ − δ(B) + min(2∆, τMon(t) + δ(B)− τRTC(t))
7: if T = B then

8: Collect transactions into D̂ and broadcast
(

H(B), D̂, â, R̂, kp, signks
(H(B) | D̂ | â | R̂ | kp)

)

9: end if

10: end with

at the example of four consecutive blocks B1,B2,B3,B4. The

vertical bars show when miners expect a block to arrive based

on their time τ̃(t), i.e. when τ̃(t) = σ(Bi). The vertical dashed

line shows when the arrival of blocks is expected based on the

real time t, i.e. when t = σ(Bi). Finally, the arrows indicate

the time correction miners undertake when they receive a block

and the symbol shows the time blocks are broadcast.

Primarily, a miner uses his clock τ̃(t) for finding the right

time to broadcast a block. However, to reduce deviations from

real time, each miner also corrects this time based on his

τRTC(t). As shown for miner 1 in block B2, this does not

always lead to a correction in the right direction, as miner 1

in this case has an inaccurate real-time clock.

Nevertheless, by the synchronization mechanisms described

in this section, deviations are reduced gradually. While the

miners’ times τ̃(t) differ substantially at block B1, both the

deviation of miners’ times to each other and the deviations to

real time t have assumed an acceptable level for block B4.

V. BEACONBLOCKS

We now present BeaconBlocks, a scheme that combines

interleaved miner selection as described in Section III with

on-chain time synchronization as described in the previous

Section IV. The scheme has three parameters:

• TB ∈ R
+ is the target average interval between any two

consecutive blocks, e.g. TB = 60s.

• A stake delay 2ω with ω ∈ N which is, very informally

stated, the minimum time, measured as number of blocks,

before an investment in mining power can yield revenues,

e.g. ω = 2160.

• A time correction ∆ ∈ R
+, so that ∆/TB is an upper

bound for the absolute values of the nodes’ relative clock

drifts, e.g. ∆ = 0.6s.

BeaconBlocks proceeds by broadcasting blocks B =
(h,D, a,R, ρ, s). We denote B’s ith predecessor in the chain

as B−i and by Bh,BD,Ba,BR,Bρ and Bs the corresponding

fields in B.
A block consists of h, the hash of the previous block, D,

denoting transaction data, a ∈ N, specifying the block B−a,

B stems from, R, a pseudorandom value the block’s lag time

is derived from, ρ, the block creator’s public key and s, a

signature authenticating the block. Similar to Section III, we

denote by qρ(B) ρ’s mining power after processing block B,

e.g. ρ’s relative capital in the case of classical PoS.

Chain-based PoS can be considered a repeated decentralized

lottery, where the winner is rewarded by being permitted to

create one block. For this pseudorandom miner selection we

thus need a random seed S. Preventing manipulations of this

seed value has turned out to be a tricky task. We here use

ideas of [4, 5]. In particular, in accordance to [5] the seed

value S(B), relevant for blocks stemming from block B, is

determined by hashing together the randomness values of all

blocks preceding B−ω , i.e.

S(B) = H
(

S(B−1) | B−ω
R

)

.

From the seed we compute lag times for block broadcasting

as − ωTB

qρ(B−2ω) ln(2
−LHH(R)), where R is a signature for

S(B) under ρ. Hence, when receiving a block B, which stems

from block B−Ba , we can compute the time when B was

expected to arrive at as

σ(B) = σ(B−Ba)− ωTB

qBρ
(B−Ba−2ω)

ln
(

2−LHH(BR)
)

.

On the other hand, when creating a block extending the chain

at a block B, it can stem from any of the last ω blocks. Hence,

we obtain a pool of possible times for when a miner is able

to create blocks, which can be written as the set

P (B)=
{(

a+1,R,σ(B−a)− ωTB

qkp
(B−a−2ω)

ln(2−LH H(R))

)

∣

∣

∣
0≤a<ω∧R=signks

(S(B−a))

}

.

With these definitions of σ(B) and P (B), we can now write

the algorithm for processing a block as depicted in Algorithm 1

and Algorithm 2. Receiving a new block B, in the first line

of Algorithm 1 a node verifies the formal requirements of the

block, i.e. validity of signatures and of transactions extending

the chain. In line 2 it then adapts the offset δ. Here, sgn(·)
denotes the signum function. If the block arrived later than

expected, δ is reduced by ∆, if it arrived earlier, it is increased

by ∆. If the block arrived early, the node then waits for the

block’s expected time to arrive and decides in line 4 if the

block constitutes the new tip of the currently best chain.

This decision is described in Algorithm 2. To prevent long-

range attacks, as will be described in Section VII, we use an

approach similar to [4] which only considers the first ω blocks

after a fork to make the decision about the best chain available.

Hence, in Algorithm 2 we first find aT ∈ N0 and aB ∈ N0

so that B−aB = T −aT is the last common predecessor of B
and the current tip T . We then distinguish if the fork dates

back more than ω blocks. If this is the case, the node selects

the chain which is better in the first ω blocks after the fork,

considering the blocks’ expected arrival times σ (see Fig. 5).

Otherwise, it deploys a simple longest-chain rule.

In line 5 of Algorithm 1, a miner then determines when he

is permitted to create the next block, and in line 6 waits for this

time to come. In line 6 also τRTC(t) is queried and the block’s

transmission time is corrected by τMon(t) + δ(B) − τRTC(t)
to reduce deviations of σ from the real time. This correction

is tightly upper-bounded as a miner might otherwise put his

chance to create a block at risk.

Finally, when the time for creating a block has come, a new

block is broadcast in line 8, given that B is still the tip of the

best chain, rerunning Algorithm 1 for the new block.

VI. FAIRNESS IN AN HONEST WORLD

At the heart of a chain-based PoS blockchain we face the

problem of selecting miners for block creation in a fair manner.

In most settings, the revenues, a miner gains from contributing

in the mining process, can be well approximated as being

proportional to the number of blocks this miner contributes.

Hence, in the present context we can understand fairness as

the property that a miner who holds a mining power of q in

some block, is able to contribute q blocks on average. In this

section, we investigate if this property is achieved if miners

follow the algorithm described in the previous Section V.

Due to the setting in which most public blockchains operate,

we have to allow miners to split their mining power to

an arbitrary number of accounts. We furthermore make the

assumption that miners aim to maximize the number of blocks

they contribute. Hence, we assume a miner ρ who wants to

extend the current chain at the most recent block B and pos-

sessed a mining power of qρ(B−a) in some recent block B−a

with a < ω, which dates back a time v0 = σ(B)−σ(B−a). For

the sake of notational brevity, we will abbreviate ρ’s mining

power as q = qρ(B−a).
Deriving the lag times as described in the previous sec-

tions from the logarithm of independent uniformly distributed

Algorithm 2 Deciding between two chains.

1: function UPDATETIP(B)

2: with (aT , aB)← arg min
aT ,aB∈N0

{aT aB | T −aT =B−aB} do

3: if min(aT , aB) > ω then

4: set T ← arg mini∈{T ,B}{σ(i−ai+ω)}
5: else if aB > aT then

6: set T ← B
7: end if

8: end with

9: end function

random variables, the lag times for individual signature evalu-

ations constitute independent exponentially distributed random

variables with mean ωTB/q.
Let us denote by F (v) ∈ [0, 1] the probability of being

able to extend the chain within a time of v ∈ R
+. For

one signature evaluation, the probability of the corresponding

lag time to lie inside [v0, v0 + v] can be found from the

cumulative distribution function (cdf) of an exponentially

distributed random variable with mean ωTB/q as

F (v) = exp

(

− qv0
ωTB

)

− exp

(

−q(v0 + v)

ωTB

)

.

Performing a first-order Taylor approximation, observe that for

q ∼ 0, F (v) ∼ qv/ωTB , becoming exact for q → 0. Hence,

when evenly splitting his q to L → ∞ accounts, and again

computing the probability of any of the lag times to lie inside

[v0, v0 + v], ρ can at his will instead obtain

F̃ (v) = 1−
(

1− q

L

v

ωTB

)L
L→∞−−−−→ 1− exp

(

− qv

ωTB

)

in place of F (v). Note that F (v) = F̃ (v) for v0 = 0. Since,

however, ∂
∂v0

F (v) ≤ 0, we know additionally that F (v) <

F̃ (v) ∀ v ∈ R
+. This inequality means that, independent of

when other miners are able to create blocks, chances that

ρ’s block comes first are always better when splitting q to

multiple accounts. Hence, assuming rational actors, accounts

will always be split if F (v) deviates significantly from F̃ (v).
F̃ (v) can thus be interpreted as the cdf of the inter-block

interval of any miner who held mining power q in a recent

block. Inter-block intervals become exponentially distributed

with mean ωTB/q and, by the properties of the exponential

distribution, inter-block intervals of the chain, any set of

miners M̃ creates, become exponentially distributed with mean

ωTB/(
∑ω−1

a=0

∑

ρ̃∈M̃ qρ̃(B−a)).
In particular, having a mining power q in one recent block,

as assumed above, the delay of the earliest block, ρ is able

to create, is exponentially distributed with mean ωTB/q and

the delay of the earliest block, anyone else is able to create,

is exponentially distributed with mean ωTB/(ω − q). The

probability of ρ to be first to create a block can be computed

as
∫∞

0
q

ωTB
exp(− qv

ωTB
) exp(−(1 − q

ω
) v
TB

)dv = q/ω. Since

mining power in one block can be used for a total of ω con-

secutive blocks, we obtain an expected number of contributed

blocks for ρ of ω q
ω
= q. This is what we wanted to prove.

VII. ATTACKS

In this section we analyze several attack scenarios on

BeaconBlocks. We model the adversary as possessing a certain

static mining power q ∈ [0, 0.5]. The adversary is thus

able to contribute blocks according to the rules the protocol

determines, but might manipulate their broadcasting times

or the chains the blocks extend, to gain an advantage. We

assume, in particular, that the adversary does not possess secret

keys from legitimate nodes, or equivalently, we consider the

mining power associated with compromised keys as part of

the adversary’s mining power.

0.0001
0.001
0.01
0.1

1
10

100
1000

0 0.1 0.2 0.3 0.4 0.5

E
(ε
)/
Δ

q

Fig. 4. Expected time error in presence of an adversary.

In the real world, an adversary might also make use of

propagation delays between legitimate nodes or even cause

additional delays. Since an in-depth discussion of such attacks

is beyond the scope of this paper, we refer the reader to

existing work on blockchain security (e.g. [18]) and remark

additionally that we expect the time synchronization mecha-

nism to double the impact of substantial propagation delays

on our scheme’s security in the worst case.

A. Exploiting time

Considering the joint synchronization of chain and time,

it comes as no surprise that an adversary can exploit the

time synchronization mechanism to gain a benefit when trying

to fork the blockchain. An adversary of mining power q
can broadcast a block every TB/q time units on average.

Transmitting all these blocks early, the time on the adversary’s

fork will run faster, as the offset is increased with every block.

After a time interval T , the time on the adversary’s fork will

be off by ∆T/TB

q
. Hence, in this time interval the adversary

will be able to create (T + T ∆
TB

q)/TB

q
blocks. Our adversary

thus is able to create a chain that is longer than it is supposed

to be by a factor of 1 + ∆
TB

q and, hence, gains an effective

mining power increase by the same factor.

Assuming a (very large) upper bound for relative clock drifts

of, e.g., ∆
TB

= 1%, an adversary can gain 50% effective mining

power with a mining power of 49.75%. The impact of this

attack strategy is thus very limited or even entirely negligible.

B. On time

As a side effect of our scheme, nodes obtain a common

time τ̃(t) ≈ t. While it is not absolutely necessary for secure

protocol operation, considering the discussion in Section IV, it

is desirable to have this common time tamper-proof against an

adversary. We now analyze the error ε = τ̃(t)−t, an adversary

of mining power q can cause. Since we in this section are

only interested in deviations an adversary might cause and not

in random deviations due to propagation delays or inaccurate

real-time clocks, we assume that in normal protocol operation

ε constantly fluctuates between −∆
2 and ∆

2 .

Aiming to make the error ε as large as possible, the

adversary will broadcast every block early, increasing nodes’

δ by ∆. Honest miners, on the other hand, will notice a large

error and broadcast blocks late, reducing δ by ∆. Altogether, ε
then transitions between the discrete states {−∆

2 ,
∆
2 ,

3∆
2 , . . .}

whose transition probabilities can be expressed as a Markov

chain:

...

Steady-state probabilities for this Markov chain resolve to

Pr

{

ε = −
∆

2

}

=
1− 2q

2(1− q)
and

Pr

{

ε =
∆

2
+ i∆

}

=
1− 2q

2(1− q)2

(

q

1− q

)i

∀ i ∈ N0.

Computing the expectation over this distribution, we obtain

an expected error E(ε) = ∆ q
1−2q , which is shown in Fig. 4.

As visible from the figure, also in this case the adversary’s

influence is very limited as long as his mining power does not

approach majority.

C. Long-range attacks

Long-range attacks aim to fork the chain at a block dating

back a substantial period of time, possibly several weeks or

even months. Producing such a long fork, an adversary might

be able to craft a chain which appears to have been generated

by a larger mining power than is actually possessed by the

adversary. For an overview of major long-range attacks, the

reader is referred to [3].

In BeaconBlocks we, similarly to [5], take seed values

relevant for block B from block B−ω and mining power from

block B−2ω . With this approach, long-range attack scenarios

look as depicted in Fig. 5. While the adversary might be able

to produce a fork which is longer than the legitimate chain,

he cannot modify mining power or seed values for the first ω
blocks in the fork and is therefore unable to improve his fork

in the first ω blocks. Similar to [4], Algorithm 2 therefore only

considers the first ω blocks after a fork for chain selection, an

approach which is known as strict chain density statistics [3].

A downside of this approach is that ω has to be chosen

large enough, so that a chain of length ω yields a reasonably

good estimate of the mining power of the nodes that have

created the chain. As the blockchain is created by stochastic

mechanisms, an adversarial chain of length ω might be better

than the legitimate chain just by chance.

We thus have to analyze the probability of the sum of

the intervals between ω consecutive blocks in the adversarial

fork to be smaller than the sum of intervals between ω
consecutive blocks in the legitimate chain. With large enough

ω, we can approximate the sum of independent exponentially

distributed random variables with mean TB/q to be distributed

according to N (ωTB/q, ωT
2
B/q

2). Thereby, the probability of

an adversary with mining power q to create a better chain

than legitimate miners with mining power 1 − q can be

computed as Q

(√
ω q−1−(1−q)−1√

q−2+(1−q)−2

)

. If we, for example,

target a probability of this attack scenario of Q(. . .) < 10−10

with q = 45%, we obtain ω > 2044.
Finally, checkpointing [3] might be added as an additional

defense mechanism, effective against posterior corruption.

Blocks considered for decision

time

Legitimate chain

Adv. chain

Fig. 5. Adversarial long-range forks of the blockchain.

VIII. TIMELESS INITIAL SYNCHRONIZATION

The previous sections described a mechanism for retaining

synchronicity of the nodes’ time τ̃(t) throughout the mining

process. Hence, we assumed an administrator to be able to

provide the correct time for τ̃(t) during software startup. In

fact, in most cases this assumption is likely to be achievable.

Furthermore, the initial synchronization phase is not critical for

the consensus procedure and, hence, every node can choose

a method that suits his needs best. Yet, in some cases it is

desirable to synchronize without any reliable time information,

e.g. if the system should be able to (re)boot autonomously.

Astonishingly, this is indeed possible.

To see this, we note that the pure existence of a block B
can be interpreted as a vote for the block’s time σ(B) having

passed already. Thus, if we are offered a chain seemingly

coming from the future, which, however, has an estimated

mining power of more than a certain threshold q̂ ∈ [0.5, 1],
we can accept the majority vote for our offset being too low.

Following this idea, for performing a timeless initial syn-

chronization, a node starts by setting τ̃(t) to the blockchain’s

launch time. As long as in a time window T ∈ R
+ more

than q̂T/TB blocks indicate a too low δ, the node increases δ,

eventually approaching τ̃(t) ≈ t, so that time synchronization

as discussed in the previous sections can take over.

The method introduces the parameters q̂ ∈ [0.5, 1] and

T ∈ R
+, which, however, are not global network parameters,

but can be tuned by each user separately. For the process to

be secure, T must be chosen large enough to ensure that an

adversary with mining power q is unable to create more than

q̂T/TB blocks in a time interval T. The number of blocks, the

adversary is able to create in an interval T , obeys a Poisson

distribution with mean qT/TB . Targeting a probability of

10−10 of the adversary to be able to create more than q̂T/TB

blocks, we obtain, e.g., T/TB > 71 for q̂ = 80%, q = 30%.

Before being able to set τ̃(t) close to the real time t, a

node has to await the creation of q̂T/TB blocks. The drawback

of this method is thus that the synchronization phase during

software startup is prolonged significantly.

IX. CONCLUSIONS

In this paper we showed relations between PoS and secure

decentralized time synchronization. We presented Beacon-

Blocks, a scheme for obtaining chain-based PoS that includes

time synchronization as a major element and deploys a new

interleaved unslotted approach for miner selection. We de-

scribed procedures for both obtaining time information when

performing initial synchronization on node startup and for

retaining synchronicity later throughout the mining process.

Many attack possibilities have to be considered when de-

signing a PoS blockchain. We therefore investigated several

attacks and showed how algorithm parameters influence the

impact on security, that different attacks have.

We brought up the research question if a variant of Bea-

conBlocks could replace traditional clock synchronization. A

scheme meeting even higher accuracy requirements would en-

able exciting new application areas of blockchain technology.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”
2008. [Online]. Available: https://bitcoin.org/bitcoin.pdf

[2] V. Buterin et al., “Proof of stake FAQ,” Ethereum Wiki,
Mar 2019. [Online]. Available: https://github.com/ethereum/
wiki/wiki/Proof-of-Stake-FAQ

[3] P. Gai, A. Kiayias, and A. Russell, “Stake-bleeding attacks on
proof-of-stake blockchains,” in Proc. CVCBT’18, June 2018, pp.
85–92.

[4] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas,
“Ouroboros genesis: Composable proof-of-stake blockchains
with dynamic availability,” Cryptology ePrint Archive, Report
2018/378, 2018, https://eprint.iacr.org/2018/378.

[5] P. Daian, R. Pass, and E. Shi, “Snow white: Robustly recon-
figurable consensus and applications to provably secure proofs
of stake,” Cryptology ePrint Archive, Report 2016/919, 2017,
https://eprint.iacr.org/2016/919.

[6] S. Popov, “A probabilistic analysis of the nxt forging algorithm,”
Ledger, vol. 1, pp. 69–83, 2016.

[7] R. Annessi, J. Fabini, F. Iglesias, and T. Zseby, “Encryption is
futile: Delay attacks on high-precision clock synchronization,”
2018. [Online]. Available: http://arxiv.org/abs/1811.08569

[8] “Study maps ’extensive russian gps spoofing’,” BBC,
Apr 2019. [Online]. Available: https://www.bbc.com/news/
technology-47786248

[9] S. King and S. Nadal, “PPCoin: Peer-to-peer crypto-
currency with proof-of-stake,” 2017. [Online]. Available:
https://peercoin.net/assets/paper/peercoin-paper.pdf

[10] “Whitepaper:nxt.” [Online]. Available: https://nxtwiki.org/wiki/
Whitepaper:Nxt

[11] L. Goodman, “Tezos – a self-amending crypto-ledger,” 2014.
[Online]. Available: https://www.tezos.com/static/papers/white
paper.pdf

[12] “Nem – technical reference,” 2018. [Online]. Available:
https://nem.io/wp-content/themes/nem/files/NEM techRef.pdf

[13] A. Poelstra, “On stake and consensus,” 2015.
[14] N. Houy, “It will cost you nothing to’kill’a proof-of-stake

crypto-currency,” 2014.
[15] I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin

mining is vulnerable,” 2013. [Online]. Available: http:
//arxiv.org/abs/1311.0243

[16] J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Proc. EUROCRYPT’15,
2015, pp. 281–310.

[17] R. Pass and E. Shi, “Fruitchains: A fair blockchain,” in Proc.
PODC’17, 2017, pp. 315–324.

[18] Y. Sompolinsky and A. Zohar, “Secure high-rate transaction
processing in bitcoin,” in Proc. FC’15, 2015, pp. 507–527.

[19] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich,
“Algorand: Scaling byzantine agreements for cryptocurrencies,”
in Proc. SOSP’17, 2017, pp. 51–68.

[20] J. Kwon, “Tendermint: Consensus without mining,” 2014.
[21] D. Schwartz, N. Youngs, A. Britto et al., “The ripple

protocol consensus algorithm,” 2014. [Online]. Available:
https://ripple.com/files/ripple consensus whitepaper.pdf

[22] D. Mazieres, “The stellar consensus protocol: A federated
model for internet-level consensus,” 2015. [Online]. Available:
https://www.stellar.org/papers/stellar-consensus-protocol.pdf

[23] V. Buterin and V. Griffith, “Casper the friendly finality gadget,”
2017. [Online]. Available: http://arxiv.org/abs/1710.09437

[24] S. Gilbert and N. Lynch, “Brewer’s conjecture and the feasi-
bility of consistent, available, partition-tolerant web services,”
SIGACT News, vol. 33, no. 2, pp. 51–59, Jun. 2002.

[25] K. Fan, S. Wang, Y. Ren, K. Yang, Z. Yan, H. Li, and Y. Yang,
“Blockchain-based secure time protection scheme in IoT,” IEEE
Internet of Things Journal, 2018.

https://bitcoin.org/bitcoin.pdf
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://eprint.iacr.org/2018/378
https://eprint.iacr.org/2016/919
http://arxiv.org/abs/1811.08569
https://www.bbc.com/news/technology-47786248
https://www.bbc.com/news/technology-47786248
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://nxtwiki.org/wiki/Whitepaper:Nxt
https://www.tezos.com/static/papers/white_paper.pdf
https://www.tezos.com/static/papers/white_paper.pdf
https://nem.io/wp-content/themes/nem/files/NEM_techRef.pdf
http://arxiv.org/abs/1311.0243
http://arxiv.org/abs/1311.0243
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://www.stellar.org/papers/stellar-consensus-protocol.pdf
http://arxiv.org/abs/1710.09437

	Introduction
	Related Work
	On-chain time synchronization
	Interleaved unslotted PoS

	Miner Selection: An informal description
	The Clock in PoS
	BeaconBlocks
	Fairness in an Honest World
	Attacks
	Exploiting time
	On time
	Long-range attacks

	Timeless initial synchronization
	Conclusions

