
dSalmon: High-Speed Anomaly Detection for
Evolving Multivariate Data Streams⋆

Alexander Hartl[0000−0003−4376−9605], Félix Iglesias[0000−0001−6081−969X], and
Tanja Zseby[0000−0002−5391−467X]

TU Wien – Institute of Telecommunications, 1040 Wien, Austria
{alexander.hartl,felix.iglesias,tanja.zseby}@tuwien.ac.at

Abstract. We introduce dSalmon, a highly efficient framework for out-
lier detection on streaming data. dSalmon can be used with both Python
and C++, meeting the requirements of modern data science research. It
provides an intuitive interface and has almost no package dependencies.
dSalmon implements main stream outlier detection approaches from lit-
erature. By using pure C++ in its core and making the most of available
parallelism, data is analyzed with superior processing speed.
We describe design decisions and outline the software architecture of
dSalmon. Additionally, we perform thorough evaluations on benchmark-
ing datasets to measure execution time, memory requirements and energy
consumption when performing outlier detection. Experiments show that
dSalmon requires substantially less resources and in most cases is able to
process datasets between one and three orders of magnitude faster than
established Python implementations.

Keywords: Outlier detection · data streams · unsupervised learning ·
Python · C++

1 Introduction

In a world of ever-increasing transmission rates, performing knowledge discovery
on data streams becomes more and more challenging. A particularly important
and well-known data mining task is detecting anomalies and outliers. A variety
of methods have been proposed for Outlier Detection (OD) on static datasets [8,
17], but also for online OD on a live stream of arriving data samples [18].

While algorithm implementations with low processing speed might pose a
problem for practical online processing of data streams, it is even more challeng-
ing for researchers. Performing feature selection or fitting algorithm parameters
using, e.g., grid search, randomized search or Bayesian optimization, involves
a vast amount of algorithm runs on a captured data stream, which naturally
should cover a period that is as long as possible. Additionally, researchers often

⋆ This work was supported by the project MALware cOmmunication in cRitical In-
frastructures (MALORI), funded by the Austrian security research program KIRAS
of the Federal Ministry for Agriculture, Regions and Tourism (BMLRT) under grant
no. 873511.

2 A. Hartl et al.

have the requirement to test algorithms on multiple datasets. Hence, the com-
putational ability to process a data stream in real time is far from sufficient for
research and slow algorithm implementations become a burden for researchers
or even prevent them from considering specific methods for a given task.

With this paper, we specifically target evolving data streams, i.e. streams
whose properties and structures in feature space change over time. Models there-
fore have to be continuously updated or retrained to avoid declining detection
performance due to outdated models. This characteristic of data streams is also
frequently referred to as concept drift. When it comes to algorithm run times, we
note a basic systematic difference for processing evolving streaming data com-
pared to the processing of static datasets considering opportunities for batch
processing in scripting languages. Due to the lack of an inherent ordering, for
static datasets, blocks of data samples can be evaluated against one and the same
model, in many cases yielding opportunities for batch processing and, hence, fast
processing. The same cannot be said about evolving streaming data. Since al-
gorithms continuously adapt to newly seen data, the model relevant for mining
data sample n is potentially influenced by all data samples 0, . . . , n− 1. Any at-
tempt for faster processing by evaluating a block of data against the same model
would therefore yield inaccurate results compared to production use, where data
samples are processed one at a time at the time of their arrival.

We present our Data Stream Analysis Algorithms for the
Impatient (dSalmon)1, a framework for performing OD on multivariate evolv-
ing streams of data, which has been specifically designed to process data as
efficiently as possible with respect to both execution time and memory foot-
print. dSalmon provides a simple and intuitive Python interface to allow rapid
development by data scientists, but performs processing in C++, achieving sub-
stantial performance benefits compared to existing implementations. It is easily
extendable by deploying software for automatically generating boilerplate code
and has almost no package dependencies. We perform a thorough comparison
of dSalmon to PySAD [35], the only Python framework for performing OD on
streaming data to date. To provide a comprehensive evaluation, we measure run
time, memory usage and energy consumption when applying stream OD algo-
rithms on three different publicly available benchmarking datasets. Our findings
show that dSalmon provides substantial benefits for all resources. Execution time
improvements of up to three orders of magnitude can be obtained with dSalmon.

The remainder of this paper is structured as follows. After highlighting re-
lated software projects in Section 2, we provide a brief introduction into the
foundations of modern stream OD approaches in Section 3, particularly consid-
ering challenges when processing high-rate data streams. In Section 4, we then
discuss design objectives, our resulting architectural design and the interface of
dSalmon. To demonstrate that substantial performance benefits can be obtained
with our deployed architecture, we proceed in Section 5 with a comprehensive
experimental evaluation and comparison of resource consumption when using
our framework. Section 6 concludes the paper.

1 https://github.com/CN-TU/dSalmon

https://github.com/CN-TU/dSalmon

dSalmon 3

2 Related Work

The most important software project related to dSalmon is the recent PySAD [35]
framework, which similarly targets OD on streaming data in Python. PySAD
provides several methods for OD on data streams and is entirely written in
Python. Some of the outlier detectors PySAD provides wrap existing Python
solutions, like, e.g., from the PyOD [36] framework or scikit-learn [24]. In this
paper, we compare runtime performance with PySAD, since algorithms imple-
mented in PySAD are similar to the ones we provide.

For OD tasks, PyOD [36] or scikit-learn [24] can also be used directly. PyOD
is a popular Python package that provides several methods for OD. Unlike
dSalmon, it targets methods for processing static datasets rather than streaming
data. Several outlier detectors for static datasets are also provided by scikit-learn,
the most popular Python framework for machine learning and data mining.

A well-known software project for processing streaming data is the MOA [7]
framework implemented in Java. Algorithms provided by MOA are not limited
to OD, but cover several fields of data mining like clustering and classification.
Outlier detectors for streaming data implemented in MOA are, however, limited
to a distance-based outlier definition and provide only binary labels instead of
outlier scores. In dSalmon, we additionally implement several recent approaches
for stream OD like ensemble-based methods. MOA is meant to be used as a
stand-alone application rather than a programming library. Since implemented
algorithms additionally differ severely from algorithms implemented in dSalmon,
we do not include MOA in our experimental evaluations.

In the Java community, also the ELKI [27] framework is worth mentioning.
ELKI provides a comprehensive selection of data mining algorithms. However,
similar to PyOD and scikit-learn, it focuses on the processing of static datasets
instead of streaming data processing.

3 Outlier Detection on Evolving Data Streams

Detection of outliers in evolving data streams is an important data mining prob-
lem. Several techniques have been proposed in the literature [18]. Coarsely clas-
sified, OD can be performed based on distances to nearest neighboring sam-
ples [3, 16, 19, 34], deploying histograms [25], relying on tree structures [12, 29]
or by performing density estimations in feature space [22, 26].

In data stream analysis, the underlying technique for handling concept drift
is as critical as computing outlier scores. This aspect of algorithm construction
is of substantial importance, since it determines whether the memory length, i.e.
the duration for which patterns in the data stream should be remembered, has
a strong influence on the algorithm’s resource consumption. Particularly in the
context of high-rate processing, this property if of substantial relevance.

For handling concept drift, several methods follow a sliding window (SW)
approach [3, 12, 19, 25, 26, 34], where the most recently seen N data samples are
stored and used for assessing outlierness of newly arriving data samples, N ∈ N

4 A. Hartl et al.

SW
-D
B
O
R

SW
-K
N
N

SW
-L
O
F

LO
D
A
[2
5]

R
S-
H
as
h
[2
6]

R
R
C
F
[1
2]

H
S-
Tr
ee
s
[2
9]

xS
tr
ea
m
[2
2]

SD
O
st
re
am

[1
6]

Windowing mechanism SW SW SW SW SW SW RW RW EW
Constant space complexity × × × × × × ✓ ✓ ✓
Constant time complexity × × × × ✓ × ✓ ✓ ✓
Ensemble-based × × × ✓ ✓ ✓ ✓ ✓ ×
Parallelizable in dSalmon × × × ✓ ✓ ✓ ✓ ✓ ×

Fig. 1. Methods for streaming OD from related work available in dSalmon.

denoting the window length. The use of a SW has the effect that space complexity
depends linearly on memory length, rendering SW-based algorithms impractical
for high-rate data streams. In addition, as a general rule, time complexity is
significantly influenced by memory length.

For this reason, some modern OD methods adopt a reference window (RW)
approach [22, 29]. In this case, a model is trained from observed data samples
without performing outlier scoring on the observed data. After having observed
N data samples, the trained model is deemed the RW and used for scoring
outlierness of newly arriving data samples, while a new model is trained from
newly observed data. Hence, for scoring outlierness of points kN . . . (k + 1)N
with k ∈ N and the window length N ∈ N, data samples (k − 1)N . . . kN − 1
are used as RW. RW methods typically achieve space and time complexity O(1)
with respect to memory length.

Another approach for achieving O(1) complexity is the use of an exponential
window (EW) [16, 26]. In this case, models use an exponentially weighted moving
average for internal counters, avoiding the need to store data samples.

In Fig. 1, we show OD methods implemented in dSalmon and several char-
acteristics relevant for execution time.

4 Architectural Design and Interface

We now describe how we engineered dSalmon to optimize usability for research
on streaming data processing. To motivate our architectural design, we start by
depicting software goals and resulting design decisions.

4.1 Design Decisions

We primarily target researchers working with streaming data who aim to develop
or optimize systems and algorithms and therefore possess offline datasets of
captured data streams. Here we present the objectives that motivated our design
decisions for dSalmon.

dSalmon 5

– High Speed Data Processing. A primary goal is the optimization of run
times of the algorithms provided by dSalmon. This is especially important
for researchers who conduct tests with different algorithms and parameters,
aiming to make an informed decision about the best parameterization.
Design Decision: To achieve high-speed processing, the core of dSalmon
is implemented in C++. Furthermore, a spatial indexing data structure is
used to reduce execution times of nearest neighbors and range queries.

– Straightforward Usability. In the field of data science, Python is a com-
monly used language. Many tools provide Python interfaces and researchers
often develop algorithms in Python. While largely implemented in C++, we
thus aimed to provide an interface that is familiar in the Python community.
Design Decision: For outlier detectors, we adhere to the known interface
of scikit-learn, which also has been adopted by PyOD.

– Processing of Recorded Data. While in the application phase data sam-
ples have to be processed one at a time, during algorithm development and
parameter tuning researchers commonly can make use of datasets consisting
of previously collected streaming data. If desired, dSalmon allows providing
blocks of data as input to achieve superior processing speed. In such cases, to
accomplish a behavior equivalent to application phases, the implementation
must guarantee to be invariant of the used block size.
Design Decision: To provide block size invariance, we process block sam-
ples sequentially within our fast C++ backend. Hence, block size has no
effect on the returned results.

– Support for Efficient Ensemble Learning. In recent research, it has
become common to construct data mining algorithms by pooling the results
of an ensemble of weak learners, providing opportunities for embarrassingly
parallel processing. These opportunities for parallelization have to be passed
on the user, allowing a substantial speedup on modern computing hardware.
Design Decision: We leverage available parallelism in the core of dSalmon,
allowing the user to simply set an n jobs parameter to reduce run time.

– Reproducibility. To support reproducibility of results, results obtained
from randomized algorithms have to be parameterized by a random seed,
so that results are deterministic and reproducible when providing the same
seed value. Changing the used block size or the number of parallel computing
threads has to leave the obtained results unaffected.
Design Decision: We support parameterization of randomized algorithms
by a random seed and engineered algorithm implementations to be invariant
of block size or requested parallelism.

– Simple Installation and Maintenance. To reduce the surface for ver-
sion incompatibilities and provide an uncomplicated installation, it is highly
beneficial to keep the number of software dependencies small.
Design Decision: For installing dSalmon, we only require NumPy [14].
While dSalmon uses SWIG [6] for generating Python wrapper code and
makes intensive use of Boost [13], the permissive licenses of SWIG and Boost
allow us to ship any code required for compilation together with dSalmon.

6 A. Hartl et al.

Py

th
on

us
er

 c
od

e

 C

++

us
er

 c
od

e

Python
interface layer

dSalmon

SW
IG

Vectorization
layer

 Core
algorithms

Fig. 2. Architecture of dSalmon.

Besides the above goals, it is also worth elaborating on some tasks that we
explicitly constrain in the development of dSalmon.

– Algorithm Fidelity. A clear non-goal is the optimization of any of the
implemented algorithms for OD accuracy. Such improvements inherently
depend on the specific problem under investigation and, hence, are diffi-
cult to be made in an objective way. Rather, we follow the descriptions of
the respective algorithm authors as closely as possible, so that users of our
framework can be confident to deploy an established, well-tested method for
their research tasks.

– Maximum Code Reuse. We see the focus of our framework in filling an
important gap by providing highly efficient processing for streaming data.
On the other hand, for several recurring tasks of data analysis and pro-
cessing, well-functioning and comprehensive tools are provided by existing
frameworks like NumPy [14], scikit-learn [24] or SciPy [30], or can trivially be
implemented in a fast, vectorized manner. We explicitly avoid reimplement-
ing tools that are already provided by established software projects to keep
our code base narrow and relieve the user from having to choose between
competing implementations. For instance, comprehensive metrics for evalu-
ating the quality of an obtained outlier scoring are provided by scikit-learn,
like, e.g., the ROC-AUC score or the P@n score.

4.2 Architecture

Considering design decisions in the previous Section 4.1, it was of importance
for us to allow use of dSalmon from a programming language that is known and
used by data science researchers. For this reason, we targeted the Python pro-
gramming language, which allows efficient and swift data science development.

Traditional data mining algorithms for static data in many cases have at least
limited opportunities for batch processing. Therefore, algorithms for static data
often allow efficient implementations from an interpreted language like Python
directly. However, when processing a data stream the model has to be adapted
for each processed point, inherently making batch processing hardly feasible, if
not impossible. To provide superior processing speed while allowing use from
Python directly, dSalmon therefore implements core algorithms in C++, but
provides interfaces to the algorithms from both C++ and Python.

dSalmon 7

Listing 1.1. A toy example for finding the 5 most outlying points using dSalmon.

from dSalmon . o u t l i e r import HSTrees
import numpy as np
de t e c t o r = HSTrees (window=500 , n e s t imato r s =100 , n jobs=4)
data = np . load (’ data . npy ’)
o u t l i e r s c o r e s = de t e c t o r . f i t p r e d i c t (data)
print (’ Ou t l i e r s : ’ , np . a r g s o r t (o u t l i e r s c o r e s) [− 5 :] . t o l i s t ())

Fig. 2 depicts the architecture of dSalmon. Hence, the core algorithms layer
depicted in Fig. 2 is implemented in C++. We use C++ template program-
ming for instantiating single and double precision floating point variants of all
algorithms. Researchers can thus achieve a smaller memory footprint and faster
processing times by falling back to single precision processing if required. Since
loop iterations are fast in C++, the core algorithms C++ interface accepts in-
dividual samples instead of blocks of data.

On the other hand, looping over individual samples in Python would incur a
substantial performance penalty. Hence, the C++ vectorization layer in Fig. 2
accepts blocks of streaming data and iterates over samples within each block
when passing on the data to core algorithms. To account for the dynamic nature
of data streams, we allow the user to use differently sized blocks or even to vary
the number of passed samples at each iteration. Additionally, the vectorization
layer ensures that opportunities for parallel processing are efficiently taken by,
for example, executing base detectors of ensemble methods in parallel.

For generating the actual interface between Python and C++, we deploy
SWIG [6], a tool for automatically generating Python bindings by parsing C/C++
header files. The benefits of deploying SWIG are that the code base of dSalmon
can easily be extended, leaving the generation of boilerplate interface code to
SWIG. Since SWIG supports a wide range of target languages, our approach
additionally yields the possibility to create bindings for further programming
languages like, for instance, R without having to rewrite core algorithms.

The Python interface layer depicted in Fig. 2 finally accepts blocks of stream-
ing data from user code. It accomplishes the task of ensuring a clean interface
familiar in the Python community. Additionally, it performs several sanity checks
on the provided data blocks.

We genuinely believe that source code should be publicly available and there-
fore distribute dSalmon under the LGPL 3.0 license, which permits widespread
use, but requests developers to keep modified versions open-source.

4.3 Using dSalmon for Outlier Detection

Listing 1.1 shows an example of performing OD with dSalmon. In this ex-
ample, the rows of data are interpreted as sequentially arriving samples of a
data stream. As alternative to the depicted listing, a user might similarly call
fit predict() sequentially with blocks of consecutive rows, or even iterate over

8 A. Hartl et al.

rows in data individually. Since data rows are iterated by dSalmon, all three ap-
proaches provide equal results. Choosing a too small block size, however, might
result in substantially slower processing. As described in Section 4.1, block size
invariance is crucial for evaluating algorithms in a realistic manner.

4.4 M-Tree Indexing

When developing algorithms for data mining, a frequent task is finding nearest
neighbors in a large set of points. In literature, this requirement gave rise to the
development of various indexing data structures for performing nearest neighbor
and range queries efficiently. However, many indexing trees are optimized for tree
construction from bulk data and do not allow removing points and inserting new
points once the tree has been built. In particular, this limitation applies to the
popular KDTree and BallTree data structures provided by scikit-learn [24].

dSalmon implements an M-Tree [9] spatial indexing data structure for its
internal use, which allows efficient nearest neighbor and range queries in metric
spaces. By using an M-Tree, dSalmon thus allows to modify the tree after it
has been built. To additionally allow algorithm development from Python, we
provide a Python interface for directly using an M-Tree in custom algorithms.
Similar to our further implementations, we ensured that parallel processing ca-
pabilities can efficiently be made use of and allow partially parallelized tree
building and fully parallelized tree querying in an uncomplicated way by simply
setting respective parameters.

5 Experimental Evaluation

In what follows, we present results from an extensive experimental evaluation
that we have performed to evaluate dSalmon’s resource consumption. We have
performed our algorithm benchmarks on desktop machines equipped with Intel
i7-4770 processors, 16GiB of main memory and no configured swap space. All
machines used for evaluation have an equal setup. We used CPython version 3.7.3
and Debian Buster with kernel version 4.19.0. To avoid distorted measurements,
we avoided any simultaneous use of the machines and shut down background
processes as far as possible. For measuring energy consumption, we used the
Running Average Power Limit (RAPL) [11] feature of our Intel CPUs, and sum
memory and processor power consumption. Reported execution times do not
include the time needed for loading the dataset into memory.

For performing realistic benchmarks, we selected publicly available datasets
representing multivariate streaming data:

– The SWAN-SF [4] dataset provides measurement data on solar flares. To
follow established preprocessing steps for SWAN-SF, we used preprocessing
scripts available on the Internet [2], extracting the same features that the
repository authors used in their examples. The preprocessed dataset consists
of 331,185 data samples with 12 features per sample. For assessing outlier

dSalmon 9

scores, we assigned a normal label to the majority class and marked remain-
ing classes as outliers.

– The KDD Cup’99 [1] dataset is an established dataset for OD, containing
host-based and network-based features for detecting attacks in computer
networks. We marked attack samples as outliers over normal traffic and used
one-hot encoding for nominal features. The resulting dataset has 4,898,431
data samples with 52 features each.

– The CIC-IDS-2017 [28] dataset similarly aims at detecting network attacks,
but only provides network traffic, making unsupervised attack detection sub-
stantially harder. We used an established feature vector for network traf-
fic [32] together with publicly available preprocessing scripts [23] and con-
sider network attacks as outliers over normal traffic. The resulting prepro-
cessed dataset has 2,317,922 data samples and 33 features.

We selected PySAD as framework to compare it against dSalmon and performed
all benchmarks using double-precision floating point processing. As described in
Section 2, further software projects exist for OD tasks. However, the majority of
these projects do not provide methods for processing streaming data. Further-
more, as well as with dSalmon, PySAD can be used from Python.

5.1 Nearest-Neighbors Algorithms

A simple approach for establishing the outlierness of arriving data points is
counting the number of nearest neighbors within a pre-determined radius. Hence,
in many traditional publications [3, 19, 34] an arriving data point is declared
to be an outlier if less than k ∈ N points of the current SW lie within a radius
R ∈ R+. While modern approaches for OD frequently outperform this sim-
ple nearest-neighbors-based approach in both, detection accuracy and execution
time, the importance of a simple nearest-neighbors-based approach lies in its un-
rivaled interpretability of reported outlier scores, making its availability crucial

dSalmon PySAD

50
0
1,0

00
5,0

00
10

,00
0
50

,00
0

10
0,0

00

Window size

102

103

104

Ti
m

e
(s

ec
on

ds
)

(a) CIC-IDS-2017

50
0
1,0

00
5,0

00
10

,00
0
50

,00
0

10
0,0

00

Window size

103

104

105

Ti
m

e
(s

ec
on

ds
)

(b) KDD Cup’99

50
0
1,0

00
5,0

00
10

,00
0
50

,00
0

10
0,0

00

Window size

102

104

Ti
m

e
(s

ec
on

ds
)

(c) SWAN-SF

Fig. 3. Execution time comparison for nearest-neighbors-based streaming outlier de-
tection.

10 A. Hartl et al.

for dSalmon. Interpretability is crucial in various fields of application like, e.g.,
medicine [20, 31], or network intrusion detection [5, 15, 21].

While providing a binary label (inlier/outlier) in some cases is sufficient in
practice, for research and parameter selection it is usually necessary to obtain a
score for outlierness for data samples. When requiring an outlier score instead
of a binary label, distance-based OD can be performed in two flavors:

1. When implementing a SW-based k nearest neighbors (kNN) rule, OD can
be parameterized by the neighbor count k, providing the distance to the kth

nearest point as outlier score.
2. Alternatively, OD can be parameterized by the search radius R, providing

the number of neighbors within R as inverse outlier score.

dSalmon allows OD using both flavors (1) and (2), termed SW-KNN and SW-
DBOR, respectively, and deploys M-Tree indexing to reduce execution time.

PySAD supports nearest-neighbors-based OD only in flavor (2), adopting the
name ExactStorm from [3] for this model. We thus used this operational mode
also for dSalmon, resulting in execution times as shown in Fig. 3 for different
lengths of the SW. To provide a meaningful comparison, for each individual
window size we used grid search on a logarithmic scale for finding the radius R
that optimizes the ROC-AUC score when applying the algorithm to the complete
dataset, and used the resulting R for performing the benchmark.

Execution time benefits demonstrated in Fig. 3 can be explained by two ef-
fects: On the one hand, for small window lengths execution time is dominated
by interpretation overhead of the Python language for PySAD, which dSalmon
avoids due to its C++ core implementation. However, PySAD sensibly performs
distance computations for each processed data sample in a vectorized manner, di-
minishing the interpretation overhead as the window length increases. As shown
in Fig. 3, dSalmon is able to retain a substantial speedup even as window size
increases. This observation demonstrates execution time benefits of M-Tree in-
dexing compared to straight per-sample distance computations.

5.2 Ensemble-based Outlier Detectors

In recent research, an increasingly popular approach for OD, which sets new
records in detection accuracy, is to construct algorithms by pooling outlier scores
obtained by an ensemble of weak learners. Beneath yielding good accuracy, this
approach is intrinsically embarrassingly parallel, as the processing of distinct
base detectors can trivially be distributed to several workers. dSalmon allows to
easily leverage this feature by simply setting an n jobs parameter.

When evaluating execution performance, for the sake of providing a fair com-
parison, we chose algorithms whose specification leaves little room for interpre-
tation. In particular, we selected the following methods:

1 Missing results for RRCF using PySAD indicate experiment runs that failed due to
reaching Python’s recursion limit.

2 xStream for KDD Cup’99 using PySAD with 50 random projections failed due to
running out of memory.

dSalmon 11

100

101

102

103

No
rm

al
ize

d
ex

ec
ut

io
n

tim
e PySAD

dSalmon (4 jobs)
dSalmon

100

101

102

No
rm

al
ize

d
en

er
gy

 c
on

su
m

pt
io

n

50
0
1,0

00
5,0

00
10

,00
0
50

,00
0

10
0,0

00 4 6 8 10 12 14 50
0
1,0

00
5,0

00
10

,00
0
50

,00
0

10
0,0

00 5 10 20 50

100

101

No
rm

al
ize

d
m

ax
im

um
 R

SS

Window length for
SW-DBOR

Tree depth for
HS-Trees

Window length for
RRCF1

Projection count for
xStream2

Fig. 4. Overall comparison of the resource consumption of several outlier detectors im-
plemented by dSalmon and PySAD. For each parameter setting, values are normalized
to results obtained by single-threaded dSalmon for better comparison. Bars depicted
for each algorithm parameterization indicate results for SWAN-SF, KDD Cup’99 and
CIC-IDS-2017 in this order.

– Robust Random Cut Forest (RRCF) [12] uses an ensemble of dynamically
constructed trees, where each tree performs random cuts based on the fea-
ture space of observed samples. Concept drift is taken care of using a SW
approach. We perform runs with varying window sizes to show dependence
when varying this parameter.

– Half-Space-Trees [29] similarly constructs a tree ensemble, but performs tree
construction statically at the time of algorithm initialization. Concept drift is
considered based on a RW approach. In our experiments, we vary the depth
of the constructed trees to evaluate influence of tree depth on resource usage.

– xStream [22] is a recent method for OD, which introduces half-space-chains,
which establish an anomaly score by splitting randomly selected features
with varying precisions. xStream combines half-space-chains with the tech-
nique of random projections. For benchmarking, we set the chain length to
15 as used for the evaluations in [22] and vary the number of projections to
show dependence on this parameter.

In our experiments, we use an ensemble size of 100 for all algorithms, which
is similarly used as default value for ensemble methods by scikit-learn. Using

12 A. Hartl et al.

dSalmon dSalmon (4 jobs) PySAD

SWAN-SF
KDD Cup'99

CIC-IDS-2017

100

101

102

103
Ti

m
e

(s
ec

on
ds

)

(a) Time

SWAN-SF
KDD Cup'99

CIC-IDS-2017

102

103

M
ax

im
um

 R
SS

 (M
iB

)

(b) Memory

SWAN-SF
KDD Cup'99

CIC-IDS-2017
0.0

0.2

0.4

0.6

Pr
ec

isi
on

 @
 n

(c) P@n

Fig. 5. HS-Trees: Resource consumption and OD performance using a tree depth of
10.

100 base estimators as ensemble size is a natural choice and is likely to reduce
statistical variation of outlier scores to an acceptable level. For dSalmon, we
evaluate performance for both single-threaded operation and when utilizing four
processor cores. Multi-threaded operation in not supported by PySAD.

In Fig. 4 we depict a summarized comparison of resource consumption that
we measured while performing OD with dSalmon and PySAD on the SWAN-
SF, KDD Cup’99 and CIC-IDS-2017 datasets, also including the results already
presented in Section 5.1. We depict execution time, memory usage as maximum
Resident Set Size (RSS) and energy consumption. Since we aim to depict relative
performance when using both frameworks, we normalize all measurements by
results obtained when using dSalmon on one processor core.

Fig. 4 shows that, particularly for modern ensemble-based algorithms, dSalmon
yields substantial execution time benefits. For most algorithm runs, a speed-up
by a factor of more than 100 can be obtained. From Fig. 4 we can additionally
conclude that dSalmon makes highly efficient use of parallel processing capabili-
ties. Execution time indicates that, by using four simultaneous jobs, a speed-up
of almost 4 can be obtained in most cases. Furthermore, memory consumption
does not increase when relying on parallel processing, allowing highly efficient
operation on modern multi-core desktop machines or servers. It is also inter-
esting to note that by relying on multi-threaded processing considerable energy
savings can be obtained.

In what follows, we will analyze behavior for specific algorithms in more
detail. We skip RRCF for closer analysis, as for RRCF many PySAD runs failed
due to reaching the maximum recursion limit, which cannot be fixed safely [33].
RRCF results that we obtained for SWAN-SF indicate that dSalmon shows
markedly low runtimes, especially if longer memory lengths are required.

Half-Space-Trees Fig. 5 shows the absolute measurement readings that we
obtained for HS-Trees with a tree depth of 10. In the light of execution times in
Fig. 5 (a), we can generally attest HS-Trees’ outstanding run time performances,
since HS-Trees is able to process millions of data samples in about 10 seconds.

dSalmon 13

It is worth noting that, besides obtaining markedly different execution times,
we also obtained deviating results for detection performance when deploying
both implementations, as shown in Fig. 5 (c). This can be explained by PySAD
basing the reported outlier score on all tree nodes traversed for one sample,
while dSalmon computes outlier scores only from terminal nodes as suggested by
Tan et al. [29] when introducing HS-Trees. Fig. 5 (c) additionally demonstrates
reproducibility of obtained results for dSalmon. Hence, for both independent
algorithm runs – one utilizing one CPU core and another utilizing four cores –
the precise same outlier scores are reported, since the same seed value has been
provided as parameter. This holds true even though both runs differ in their
parameterization for parallel processing. We have verified this property also for
all further runs depicted in Fig. 4.

In Fig. 6, we depict absolute execution times as function of tree depth. Hence,
dSalmon obtains an approximately 100 times speed-up and execution time shows
only a slight increase when increasing the tree depth. In fact, rather memory
occupation is limiting the usable maximum tree depth, since for HS-Trees tree
structures are statically created, resulting in memory consumption that increases
exponentially with tree depth.

xStream Fig. 7 shows absolute execution times und maximum RSS as func-
tion of the number of projections for xStream. As discussed by the algorithm
authors [22], execution time depends linearly on ensemble size, chain length
and the number of projections. Hence, observed behavior for our dSalmon runs
is reasonable. We notice that PySAD shows a less pronounced dependency of
the number of projections. Consequently, execution time differences of dSalmon
range between 20 and 200. dSalmon proves to make highly efficient use of parallel
processing, allowing a 4-times speed-up by using 4 parallel jobs.

Memory consumption as a function of the number of projections, as depicted
in Fig. 7, is particularly striking. While PySAD’s memory consumption shows no
clear dependence of the number of projections for SWAN-SF, for KDD Cup’99 a
clear monotonic dependence can be observed, and the algorithm run eventually

dSalmon dSalmon (4 jobs) PySAD

4 6 8 10 12 14
Tree depth

101

102

103

Ti
m

e
(s

ec
on

ds
)

(a) CIC-IDS-2017

4 6 8 10 12 14
Tree depth

101

102

103

Ti
m

e
(s

ec
on

ds
)

(b) KDD Cup’99

4 6 8 10 12 14
Tree depth

100

101

102

Ti
m

e
(s

ec
on

ds
)

(c) SWAN-SF

Fig. 6. Runtimes of HS-Trees in response to variations of the tree depth.

14 A. Hartl et al.

dSalmon dSalmon (4 jobs) PySAD

102

103

104

105
Ti

m
e

(s
ec

on
ds

)

5 10 20 50
Number of projections

0

2

4

6

8

M
ax

im
um

 R
SS

 (G
iB

)

(a) CIC-IDS-2017

103

104

105

Ti
m

e
(s

ec
on

ds
)

5 10 20 50
Number of projections

0.0

2.5

5.0

7.5

10.0

M
ax

im
um

 R
SS

 (G
iB

)

(b) KDD Cup’99

101

102

103

104

Ti
m

e
(s

ec
on

ds
)

5 10 20 50
Number of projections

0.0

0.5

1.0

1.5

2.0

M
ax

im
um

 R
SS

 (G
iB

)

(c) SWAN-SF

Fig. 7. xStream: Resource consumption in response to variations of the number of
projections.

fails on our 16GiB machine due to running out of memory for 50 projections.
xStream authors [22] suggest using a Count-min sketch (CMS) [10] for counting
bin frequencies to ensure constant space complexity. In dSalmon, we adopt the
approach of using CMSs, while PySAD uses classical hash tables. The use of
hash tables for this purpose provides an explanation for the data-dependent
memory consumption observable in Fig. 7, since memory consumption in this
case is reduced if the majority of data samples shares a small number of bins. In
dSalmon, memory requirements for storing CMS structures are independent of
the projection count. The increase of memory consumption can be explained by
the memory requirements for storing projected values for a given block of data.

6 Conclusions

We have introduced and presented dSalmon, a highly efficient framework for
OD on multivariate evolving data streams. Due to the nature of streaming data,
data samples frequently accumulate to a substantial volume within short time,
making efficient processing crucial. We have presented dSalmon’s architecture,
which allows easy extension and enables researchers and practitioners to add
algorithms for OD or even implementing entirely different methods for analyzing
streaming data.

In a thorough evaluation, we have shown that dSalmon was able to outper-
form existing Python stream outlier detectors by up to three orders of magni-
tude with respect to execution time. Combined with the selection of a recent OD
method optimized for processing high-rate data streams, gigabytes of data can be
processed in few seconds, paving the way for analyzing comprehensive datasets,
which increasingly become available due to advances of modern technology.

Bibliography

[1] Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html (1999), accessed: 2023-07-04

[2] Ahmadzadeh, A., Aydin, B.: Multivariate Timeseries Feature Extraction on
SWAN Data Benchmark (SWAN Features) (2020), GSU Data Mining Lab

[3] Angiulli, F., Fassetti, F.: Detecting distance-based outliers in streams of
data. In: Proceedings of the 16th ACM Conference on Information and
Knowledge Management, pp. 811–820, CIKM’07, ACM, New York, NY,
USA (2007)

[4] Angryk, R.A., Martens, P.C., Aydin, B., Kempton, D., Mahajan, S.S., Ba-
sodi, S., Ahmadzadeh, A., Cai, X., Filali Boubrahimi, S., Hamdi, S.M.,
Schuh, M.A., Georgoulis, M.K.: Multivariate time series dataset for space
weather data analytics. Scientific Data 7(227) (2020)

[5] Bachl, M., Hartl, A., Fabini, J., Zseby, T.: Walling Up Backdoors in Intru-
sion Detection Systems. In: Big-DAMA ’19, pp. 8–13, ACM, Orlando, FL,
USA (2019)

[6] Beazley, D.M.: SWIG: An easy to use tool for integrating scripting languages
with C and C++. In: Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, p. 15, TCLTK’96, USENIX Association, USA
(1996)

[7] Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: Moa: Massive online anal-
ysis. Journal of Machine Learning Research 11, 1601–1604 (2010)

[8] Campos, G.O., Zimek, A., et al.: On the evaluation of unsupervised outlier
detection: measures, datasets, and an empirical study. Data Mining and
Knowledge Discovery 30(4), 891–927 (2016), ISSN 1573-756X

[9] Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for
similarity search in metric spaces. In: Proceedings of the 23rd International
Conference on Very Large Data Bases, p. 426–435, VLDB ’97, Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA (1997), ISBN 1558604707

[10] Cormode, G., Muthukrishnan, S.: An improved data stream summary: the
count-min sketch and its applications. Journal of Algorithms 55(1), 58–75
(2005)

[11] David, H., Gorbatov, E., Hanebutte, U.R., Khanna, R., Le, C.: Rapl: Mem-
ory power estimation and capping. In: 2010 ACM/IEEE International Sym-
posium on Low-Power Electronics and Design (ISLPED), pp. 189–194, IEEE
(2010)

[12] Guha, S., Mishra, N., Roy, G., Schrijvers, O.: Robust random cut forest
based anomaly detection on streams. In: Proceedings of The 33rd Interna-
tional Conference on Machine Learning, Proceedings of Machine Learning
Research, vol. 48, pp. 2712–2721, PMLR, New York, New York, USA (20–22
Jun 2016)

[13] Gurtovoy, A., Abrahams, D.: The boost C++ metaprogramming library
p. 22 (2002)

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

16 A. Hartl et al.

[14] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., Kern,
R., Picus, M., Hoyer, S., van Kerkwijk, M.H., Brett, M., Haldane, A., del
Ŕıo, J.F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K.,
Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., Oliphant, T.E.: Array
programming with NumPy. Nature 585(7825), 357–362 (Sep 2020)

[15] Hartl, A., Bachl, M., Fabini, J., Zseby, T.: Explainability and adversarial
robustness for RNNs. In: 2020 IEEE Sixth International Conference on Big
Data Computing Service and Applications (BigDataService), pp. 148–156,
IEEE, New York, NY, USA (2020)

[16] Hartl, A., Iglesias, F., Zseby, T.: SDOstream: Low-density models for
streaming outlier detection. In: ESANN 2020 proceedings, pp. 661–666
(2020)

[17] Iglesias, F., Hartl, A., Zseby, T., Zimek, A.: Are network attacks outliers?
a study of space representations and unsupervised algorithms. In: Joint
European Conference on Machine Learning and Knowledge Discovery in
Databases, pp. 159–175, Springer (2019)

[18] Iglesias Vázquez, F., Hartl, A., Zseby, T., Zimek, A.: Anomaly detection in
streaming data: A comparison and evaluation study. Expert Systems with
Applications 233, 120994 (2023), ISSN 0957-4174

[19] Kontaki, M., Gounaris, A., Papadopoulos, A.N., Tsichlas, K., Manolopou-
los, Y.: Continuous monitoring of distance-based outliers over data streams.
In: IEEE 27th Int. Conference on Data Engineering, pp. 135–146 (April
2011)

[20] Lakkaraju, H., Rudin, C.: Learning Cost-Effective and Interpretable Treat-
ment Regimes. In: Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, pp. 166–175, PMLR, Fort Lauderdale,
FL, USA (20–22 Apr 2017)

[21] Lundberg, H., Mowla, N.I., Abedin, S.F., Thar, K., Mahmood, A., Gidlund,
M., Raza, S.: Experimental analysis of trustworthy in-vehicle intrusion de-
tection system using explainable artificial intelligence (xai). IEEE Access
10, 102831–102841 (2022)

[22] Manzoor, E.A., Lamba, H., Akoglu, L.: xStream: Outlier detection in
feature-evolving data streams. In: 24th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (2018)

[23] Meghdouri, F.: Datasets Preprocessing (2021), URL https://github.com/
CN-TU/Datasets-preprocessing, gitHub repository

[24] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research
12, 2825–2830 (2011)

[25] Pevný, T.: Loda: Lightweight on-line detector of anomalies. Machine Learn-
ing 102(2), 275–304 (Feb 2016)

https://github.com/CN-TU/Datasets-preprocessing
https://github.com/CN-TU/Datasets-preprocessing

dSalmon 17

[26] Sathe, S., Aggarwal, C.C.: Subspace outlier detection in linear time with
randomized hashing. In: 2016 IEEE 16th International Conference on Data
Mining (ICDM), pp. 459–468 (2016)

[27] Schubert, E., Zimek, A.: Elki: A large open-source library for data analysis
– elki release 0.7.5 “heidelberg”. arXiv preprint arXiv:1902.03616 (2019)

[28] Sharafaldin, I., Habibi Lashkari, A., Ghorbani, A.A.: Toward Generating a
New Intrusion Detection Dataset and Intrusion Traffic Characterization. In:
ICISSP, pp. 108–116, SCITEPRESS, Funchal, Madeira, Portugal (2018)

[29] Tan, S.C., Ting, K.M., Liu, T.F.: Fast anomaly detection for streaming data.
In: Twenty-Second International Joint Conference on Artificial Intelligence
(2011)

[30] Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S.J., Brett, M., Wilson, J., Millman, K.J., Mayorov, N., Nel-
son, A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng,
Y., Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H.,
Pedregosa, F., van Mulbregt, P., SciPy 1.0 Contributors: SciPy 1.0: Fun-
damental Algorithms for Scientific Computing in Python. Nature Methods
17, 261–272 (2020)

[31] Weng, S.F., Reps, J., Kai, J., Garibaldi, J.M., Qureshi, N.: Can machine-
learning improve cardiovascular risk prediction using routine clinical data?
PloS one 12(4), 1–14 (2017)

[32] Williams, N., Zander, S., Armitage, G.: A Preliminary Performance Com-
parison of Five Machine Learning Algorithms for Practical IP Traffic Flow
Classification. SIGCOMM Comput. Commun. Rev. 36(5), 5–16 (Oct 2006)

[33] Wouters, T.: Answer to “what is the maximum recursion depth in
python, and how to increase it?” (2010), URL https://stackoverflow.com/
a/3323013, stackoverflow discussion

[34] Yang, D., Rundensteiner, E., Ward, M.O.: Neighbor-based pattern detection
for windows over streaming data. In: Proceedings of the 12th Int. Conference
on Extending Database Tech.: Advances in Database Tech., pp. 529–540,
EDBT’09, ACM, New York, NY, USA (2009)

[35] Yilmaz, S.F., Kozat, S.S.: Pysad: A streaming anomaly detection framework
in python. arXiv preprint arXiv:2009.02572 (2020)

[36] Zhao, Y., Nasrullah, Z., Li, Z.: Pyod: A python toolbox for scalable outlier
detection. Journal of Machine Learning Research 20(96), 1–7 (2019)

https://stackoverflow.com/a/3323013
https://stackoverflow.com/a/3323013

	dSalmon: High-Speed Anomaly Detection for Evolving Multivariate Data Streams

