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Abstract

Identifying attacks in network traffic constitutes a promising application area of Machine
Learning (ML) and data mining techniques. While in related work many traditional
ML techniques are presented with impressive detection performance under laboratory
conditions, they show severe shortcomings and performance drops when implemented in
real life. This can be explained when considering several challenges that data scientists
in this area have to face. In particular, (a) traditional static models cannot cope with
dynamics of network data, (b) model predictions often lack explainability, impeding
successful deployability in practice, (c) systems that aim at detecting network attacks
are faced with a highly adversarial environment, and (d) detectors developed in the past
frequently relied on information that is not available for encrypted traffic. In this thesis,
we address these challenges by developing novel methods for network traffic analysis and
attack detection.

In particular, we investigate techniques appropriate for dealing with concept drift in the
context of network traffic that allow continuous training throughout usage. We analyze
algorithms suited for streaming anomaly detection, which are thus able to adjust to
evolving characteristics of observed traffic, and present a new algorithm suited specifically
for the high-speed requirements in data network environments. We propose and evaluate
the use of visualization techniques for explainable ML in the field of network traffic
analysis, which are applicable even when deploying opaque recurrent deep learning
techniques, and we develop novel techniques for analyzing encrypted traffic.

The methods and approaches we outline in this thesis are highly relevant for network
traffic analysis in high-security infrastructures due to the very specific combination of
challenges in this field. However, there is a variety of other fields and application areas
in data science to which our methods can be applied. With this thesis, we introduce new
directions for future research, and we outline methods and algorithms to address the
challenges that analysis of network traffic yields in modern times.
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Kurzfassung

Die Erkennung von Angriffen in Netzwerkverkehr ist ein vielversprechender Anwen-
dungsbereich für maschinelles Lernen (ML) und für Data-Mining-Verfahren. Während
in bisherigen wissenschaftlichen Publikationen viele herkömmliche ML-Techniken mit
beeindruckender Erkennungsleistung unter Laborbedingungen vorgestellt wurden, weisen
sie bei der Umsetzung in der Praxis erhebliche Mängel und Leistungseinbußen auf. Dies
lässt sich erklären, wenn man mehrere Herausforderungen betrachtet, denen sich Data
Scientists in diesem Bereich stellen müssen. Insbesondere können (a) herkömmliche
statische Modelle die Dynamik von Netzwerkdaten nicht bewältigen, (b) fehlt es den
Modellvorhersagen oft an Erklärbarkeit, was den erfolgreichen Einsatz in der Praxis
erschwert, (c) sind Systeme, die auf die Erkennung von Netzwerkangriffen abzielen, mit
einer hochgradig gegnerischen Umgebung konfrontiert, und (d) stützen sich die in der
Vergangenheit entwickelten Detektoren häufig auf Informationen, die für verschlüsselten
Datenverkehr nicht mehr verfügbar sind. In dieser Arbeit widmen wir uns diesen Her-
ausforderungen, indem wir neue Methoden zur Analyse von Netzwerkverkehr und zur
Erkennung von Angriffen entwickeln.
Insbesondere untersuchen wir Techniken, die für den Umgang mit Concept Drift im
Kontext von Netzwerkverkehr geeignet sind und ein kontinuierliches Training während
der Nutzung ermöglichen. Wir analysieren Algorithmen, die sich für die Erkennung von
Anomalien in Streamdaten eignen und sich somit an die sich verändernden Merkmale des
beobachteten Verkehrs anpassen können, und stellen einen neuen Algorithmus vor, der
speziell für die Hochgeschwindigkeitsanforderungen in Datennetzumgebungen geeignet ist.
Wir schlagen den Einsatz von Visualisierungstechniken für erklärbares ML im Bereich der
Netzwerkverkehrsanalyse vor und evaluieren diese, selbst wenn undurchsichtige rekurrente
Deep-Learning-Techniken eingesetzt werden, und wir entwickeln neuartige Techniken zur
Analyse von verschlüsseltem Netzwerkverkehr.
Die Methoden und Ansätze, die wir in dieser Arbeit vorstellen, sind für die Analyse
des Datenverkehrs in Hochsicherheitsinfrastrukturen aufgrund der sehr spezifischen
Kombination von Herausforderungen in diesem Bereich sehr relevant. Es gibt jedoch
eine Vielzahl von anderen Bereichen und Anwendungsgebieten in der Data Science, auf
die unsere Methoden angewendet werden können. Mit dieser Arbeit geben wir neue
Impulse für zukünftige Forschung und skizzieren Methoden und Algorithmen, um den
Herausforderungen zu begegnen, die die Analyse von Netzwerkverkehr in der heutigen
Zeit mit sich bringt.
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CHAPTER 1
Introduction

Before diving into our scientific work, we provide an overview of the thesis in this chapter.
We introduce its research focus and motivate our research. We discuss our main research
questions and outline and summarize our contributions prior to sketching the remaining
thesis’ structure.

1.1 Preface

A critical infrastructure provides services that are essential to several aspects of today’s
society like its economy, public health, safety or security [1]. Power distribution systems
like the electrical power grid are frequently named as examples of critical infrastructures,
not only due to their mere importance, but also because their transformation and
adaptation due to the transition towards renewable energy sources yields various challenges
for the society.

Information Technology (IT) provides various benefits for optimizing the operation of
critical infrastructures and therefore is increasingly used. However, critical infrastructures
are an attractive target for attackers due to political interests, potential for ransom or
data exfiltration possibilities. Security of the IT systems used therefore is crucial and
security breaches might have detrimental consequences.

Critical infrastructures can thus be considered a paramount example of high-security
infrastructures, where protection of IT systems is a major concern. One part of a
protection strategy is the detection of attacks, malware or unwanted behavior by using
Network Intrusion Detection (NID). Data science yields various approaches that might
be used for detection. However, many challenges need to be solved for successful and
reliable deployment of data science methods for protecting high-security infrastructures:

1



1. Introduction

(a) In contrast to many application fields of data science, the characteristics of network
traffic require processing data as a stream where new data samples are seen steadily.

(b) To warrant good interaction of human experts with the Intrusion Detection System
(IDS), a main requirement is that predictions of the used methods can be understood
and interpreted, i.e. it is possible to explain why classifications have been made
as they have been and what modifications of observed data would be necessary to
change predictions.

(c) Furthermore, IDSs in high-security infrastructures are faced with a highly adversarial
environment where sophisticated attackers use targeted attacks to evade detection.
In such a scenario, the simple concept of matching observed data against known
attack patterns is of limited use.

(d) Due to the increasing use of encryption, information of transmitted payload and
protocol fields of encrypted network protocols are not available for IDSs.

In this thesis, we address all of these challenges and investigate techniques for constructing
IDSs for use in high-security infrastructures. We therefore put emphasis on techniques
that are interpretable by themselves or that allow to explain predictions made by ML
classifiers. Due to the nature of the data that needs to be processed for NID, our discourse
is focused on streaming data. We evaluate how known methods and our newly devised
methods fit into high-security infrastructures and show inevitable limitations of IDSs
when being used in this scenario.

1.2 Motivation
The problem of detecting attacks in network traffic has been an actively researched
task for a long time and has immediate applications in practice. With high-security
infrastructures becoming a target for such attacks, the relevance of IDS research has even
risen.

The aspects we explore in this thesis are highly contemporary from multiple perspectives:

• IT is being increasingly used for the operation of critical infrastructures and it has
become necessary to explore security-related questions in this context. Consequently,
the time is now to approach these questions from an analytical and empirical
perspective.

• The field of explainable and interpretable ML has become an active research area
only recently. It therefore is natural to investigate these new methods in the context
of IDSs.

• Due to the substantial amount of traffic that has to be processed in larger networks,
computational efficiency is an aspect that has to be kept in mind when designing

2



1.3. Research Questions

IDSs. However, since computational power has increased to a larger extent than
network capacity [2], we are now in the position to apply data science techniques
to captured network traffic that would not have been possible before.

At the same time, we cannot load the task of devising appropriate methods in this field
on practitioners: Due to the substantial importance for network security, methods must
be carefully and comprehensively investigated and compared. Additionally, problem
settings we explore in this thesis sometimes stand out from previous research in the field
like, e.g., when it comes to flow-based analysis of encrypted Virtual Private Network
(VPN) traffic. Exploration of these topics thus requires innovative ideas, which again
require careful evaluation to yield good results.

In this thesis, we thus attend to the problem of attack detection in high-security in-
frastructures by investigating both, unsupervised methods for attack detection and
supervised methods, putting an emphasis on explainability and interpretability. Our
focus on anomaly detection methods for streaming data is due to network data being
streaming data in their nature. Since general-purpose anomaly detection methods that
have been introduced in the related literature cannot meet the specific characteristics of
network data, we introduce novel methods that are specifically suited for application in
this domain.

1.3 Research Questions
The application of ML techniques in NID is an area that still requires more research. To
address the most pressing issues when aiming to deploy such principles in a high-security
infrastructure, we aim to answer the following questions:

RQ1. Which state-of-the-art anomaly detectors are best suitable for detecting
network attacks in streaming data?

The relevance of this question emerges due to the fact that with novel or very targeted
attacks supervised methods might reach their limits. In contrast, in this question we target
unsupervised anomaly detectors. Unsupervised methods might still be able to reveal the
malicious traffic by detecting any traffic that deviates from normal behavior. Whether
detection is possible needs to be measured by common metrics in the anomaly detection
fields and evaluations need to be performed on state-of-the-art IDS benchmarking data.
Commonly used metrics in this field are the ROC-AUC, AAP and AP@n, which we
explain in Section 2.2.3. Suitable benchmarking data can be found in publicly available
datasets, which we describe in Section 2.7. Besides providing reasonable detection results,
a detection algorithm also needs to meet the characteristics of online Network Traffic
Analysis (NTA). We can therefore state specific research questions as follows:

• What performance, measured in ROC-AUC, AAP and AP@n, can be obtained
when evaluating state-of-the-art anomaly detectors for attack detection on suitable
IDS benchmarking data?

3



1. Introduction

• Which methods in the field of outlier detection are able to handle concept drift and
are performant enough to meet the high-rate characteristics of network data?

RQ2. How can predictions of supervised network traffic classifiers be made
explainable?

Explainability for supervised ML is an important and popular research area and, as
described earlier in this chapter, highly relevant in our case. If we want to know the
influence of certain feature values on a classifier’s prediction, Partial Dependence Plots
(PDPs) or Accumulated Local Effects (ALE) plots are state-of-the-art methods, which
we will describe in Section 2.5. PDPs and ALE plots thus need to be evaluated in the
context of NID. While these plotting techniques can directly be applied in many cases,
modern Recurrent Neural Network (RNN)-based approaches use a feature structure that
does not allow a straightforward application. To cover this important area of research,
we thus need to explore:

• Can PDPs or ALE plots be used to detect classifier behavior for a given traffic
pattern?

• How can the concept of PDPs be extended to the sequential setting?

RQ3. How can explainability be accomplished for unsupervised network
traffic classifiers?

In the unsupervised domain, explainability to date has received less attention than
in the supervised domain. Evidently, when deploying an IDS based on unsupervised
techniques, it is equally important to explain and interpret classification outcomes. It
is therefore important to evaluate anomaly detectors in this respect. For performing
detection, but also for providing explanations, it is reasonable to use any information
possible. A peculiarity that contrasts network data in this respect to many fields of
anomaly detection is the importance of temporal information that is associated with
network traffic. To illuminate explainability and interpretability for unsupervised ML,
we therefore need to explore two main questions:

• Which methods for outlier detection provide interpretable results?

• How can an interpretable anomaly detector be designed that satisfies high-rate
requirements and is able to cope with concept drift as explored in RQ1?

RQ4. Which implications does the use of extensive cryptographic techniques
have for the attack surface in communication networks?

Encryption is considered a main pillow of modern information security. Yet, encryption
adds additional complexity to the system and the fact that encryption does not exclusively
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1.4. Approach

bring advantages for security, e.g. due to the possible exploitation of cryptographic
methods for hidden information exchange, might come as a surprise for some. In
particular, the use of encryption techniques that aggregate several connections on a
common encrypted link is often thought to yield almost no possibilities for analysis of
traffic, since traffic of very different types is mixed up. Since, however, this assumption has
not been proven, we investigate it by attempting to separate individual flows in encrypted
tunnel traffic. To assess the implications of encryption in high-security infrastructures
we therefore arrive at three major questions:

• What threats can the use of cryptographic tools pose to high-security infrastruc-
tures?

• How is it possible to separate flows in encrypted VPN traffic and what quantitative
separation performance can be obtained?

• What are suitable metrics for evaluating performance of successfully separating
flows in encrypted VPN traffic?

1.4 Approach
We design our approach from the characteristics of high-security infrastructures. Hence,
to be able to spot new or targeted attacks, we particularly investigate the feasibility
of detecting attacks using unsupervised ML methods. Due to the nature of network
traffic, a main building block for this task appear to be outlier detectors for streaming
data. We will therefore evaluate to what extent known streaming outlier detectors meet
the requirements of network traffic, improving them where necessary or devising new
approaches. Also the feasibility of attack detection using unsupervised ML needs to be
evaluated.

Encryption is a major building block of secure data transmission nowadays, but for NID
applications it also has the downside that encrypted traffic can no longer be analyzed
with ML techniques as efficiently as traffic submitted in clear text. While analysis of
traffic encrypted on the transport layer has been investigated intensively already and in
many cases only requires minor changes to the used ML techniques, the analysis of VPN
tunnels provides challenges that have not yet been addressed. We will therefore explore
whether it is possible to separate flows in VPN tunnels using ML techniques.

We design appropriate experiments to back our theoretical findings. This is on the
one hand necessary to quantify detection performance that we can achieve using our
investigated detection methods, on the other hand, since several approaches and scenarios
that we describe are very novel, our experiments prove the practical feasibility of our
designed algorithms.

Structuring the above tasks, we therefore schedule our work carried out throughout this
thesis as follows:
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1. To get a feeling for the applicability of outlier detection in the field, we first evaluate
whether network attacks can be detected using outlier detection, and what detection
performance can be achieved when basing experiments on available state-of-the-art
methods for outlier detection.

2. As it turns out during state-of-the-art exploration, a main problem for the appli-
cation of streaming outlier detection algorithms is that fast implementations are
hardly available. We therefore turn to the more practical task of creating fast
implementations of existing outlier detection methods.

3. Based on observed problems with state-of-the-art algorithms, we then construct
specific algorithms that address the challenges of processing network data. In
particular, we devise an algorithm that provides adequately low resource consump-
tion and provides interpretability in particular considering the temporal nature of
network traffic.

4. As explainability of ML is also crucial for supervised ML, we subsequently ad-
ditionally investigate whether modern deep learning-based approaches for attack
detection can be made explainable using PDPs or ALE plots.

5. Since high-security infrastructures use a high degree of traffic encryption, we finally
have a more detailed look at the implications of using cryptographic techniques.
As outlined above, we thus investigate whether it is possible to separate flows in
encrypted tunnel traffic, but we also investigate the use of Galois/Counter Mode
(GCM) encryption and show a novel method for hidden communication that would
not be possible if traffic was not encrypted.

1.5 Contribution
With this thesis, we make a variety of contributions to the fields of both data science
and network security:

• We perform a survey of outlier detectors for streaming data and contribute a
framework providing efficient implementations of existing methods to be used in
various fields of research.

• We show which combinations of outlier detection algorithms and feature vectors
can be used for detecting network attacks based on a common IDS evaluation
dataset. We show that attack detection using unsupervised methods is much more
challenging than using supervised methods, as it has been done in related work.

• We design and implement a new outlier detector that is particularly suited for
the characteristics of network data. We focus on known challenges in this field,
i.e. detection performance, low memory and time complexity, interpretability and
adaptability. However, we also introduce entirely new ideas by putting emphasis of
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temporal patterns that naturally exist in network data, again providing benefits
with respect to interpretability and accuracy.

• Besides our work on interpretability for unsupervised ML methods, we evaluate
applicability of explainability methods to ML methods in the field of IDSs. We thus
document findings related to the usability of explainability methods to discover
unwanted classifier behavior, but we also develop adapted explainability methods
suited for RNNs, which are particularly interesting in the field of IDSs.

• We develop an entirely new approach for the analysis of encrypted tunnel traffic,
yielding the potential for enhancing capabilities for future IDSs.

• We present case studies for security challenges that come in conjunction with
cryptographic techniques that have not been known before. For this, we discovered
a new subliminal channel related to GCM encryption, and we devised novel methods
for analyzing encrypted tunnel traffic. By depicting these challenges, we provide
new directions for research and motivate the careful application of encryption
techniques.

1.6 Structure
We begin our discussion by introducing important concepts and outlining related work
that this thesis builds on in Chapter 2. In Chapter 3, we then investigate the potential
of existing methods for unsupervised anomaly detection for detecting network attacks.
Hence, besides benchmarking the potential of outlier detection algorithms for attack
detection in terms of detection performance, we also take into account speed and resource
usage considerations and develop a highly performant algorithm collection suited for
application in NTA.

After investigating known algorithms, we devote Chapter 4 to the development of novel
methods that enhance the state of the art by introducing an algorithm fitted specifically
to the requirements we encounter in the analysis of network traffic. Besides developing
outlier detection algorithms suited for this particular use case, we also consider the
increasing use of encryption in modern communication networks and develop a method
for analyzing tunnel traffic, which arguably constitutes the most potent encryption
paradigm currently being used in practice.

However, also supervised methods provide valuable tools for IDSs and in many cases are
able to come up with impressive detection performance for known attack patterns. To
pave the way for successful deployment of popular supervised ML methods for IDSs, we
investigate in Chapter 5 how their predictions can be explained and interpreted.

To complete our discourse, in Chapter 6 we depict further challenges a defender faces
for IT security in high-security infrastructures by showing that malware communication
patterns might be undetectable independent of which ML or data science is attempted
for detection. We thus show that the methods investigated and devised in this thesis
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can constitute an important part of a security strategy, but cannot be the only line of
defense.

In Chapter 7, we discuss our previous findings and summarize their relevance for achieving
and improving the security of high-security infrastructures. Chapter 8 concludes the
thesis.
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CHAPTER 2
Background

Research areas that we explore in this thesis are located in the intersection of information
security and ML research. In this chapter, we provide the most important background
and introduce the foundations of the methods we will use throughout the thesis.

2.1 Network Traffic Analysis
The field of NTA is concerned with extracting information from traffic that has been
captured on an IP network link and classifying it. Data science yields various methods to
approach this task. However, to apply modern methods for data analysis, network traces,
which in most cases are captured in the form of Packet Capture files (PCAPs), have to
be transformed into a more structured form. We outline these preprocessing steps in this
section.

2.1.1 Defining Flows

For many ML tasks like classification or regression, it is necessary to transform the
data into a form that allows assigning labels or desired prediction outcomes to indi-
vidual instances. Hence, when processing network traffic, the question arises how this
transformation can be done and what is represented by individual instances. Arguably,
packets might be considered a reasonable smallest unit that makes up communication
in packet-switched networks. Indeed, research has successfully applied classification
methods on a packet level. However, in general individual packets are unlikely to provide
sufficient information to identify the type of traffic unless one uses Deep Packet Inspection
(DPI), i.e. additionally analyses the payload of packets. With today’s ubiquitous traffic
encryption, relying on the availability of payload information is an unrealistic assumption.

With individual packets failing to provide sufficient information, we thus need to split up
the observed sequence of packets into smaller units of sequences that each can individually
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be considered to serve a particular purpose and, hence, can be jointly processed. These
units are termed flows. Hence, when assigning labels about which type of traffic is
observed or whether it constitutes attack or benign traffic, such labelling is performed
on a per-flow basis. Flows are typically based on proximity in time and on common
properties like, e.g., a common source host or a common transport layer address, where
the set of considered common properties is termed the flow key. The definition of flows
necessarily needs to be held very flexible to account for a wide range of possible approaches
used in NTA. IPFIX [12] defines the term flow as “as a set of packets or frames passing
an Observation Point in the network during a certain time interval. All packets belonging
to a particular Flow have a set of common properties” [12].

A very popular flow definition is the 5-tuple flow key, where packets are grouped into
flows by considering transport layer protocol, source and destination IP addresses and
transport layer port numbers. The relevance of the 5-tuple flow key arises from the
fact that in most cases it maps individual TCP connections and UDP streams to flows.
Arguably, TCP connections and UDP streams can be considered as building blocks of
modern network communication.

2.1.2 Feature Extraction

Notice of adoption from previous publications (Section 2.1.2)
Parts of the contents of this section have been published in the following paper:

[131] Félix Iglesias, Alexander Hartl, Tanja Zseby, and Arthur Zimek. Are
network attacks outliers? a study of space representations and unsuper-
vised algorithms. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 159–175. Springer, 2019

Text in Section 2.1.2 has partially been composed in collaboration with Félix Iglesias.

Flows typically consist of a sequence of network packets with inhomogeneous lengths,
where each packet in a flow yields a number of features like, e.g., the packet’s length or
its Inter-Arrival Time (IAT) to the previous packet in the flow. However, many methods
in ML and data science require data samples to be provided as a constant-length vector
of features, disallowing a direct application on a flow’s packet features. It is therefore
necessary to aggregate features of packets contained in a flow into a static-size set of flow
features, which are designed to yield as much information about contained packets as
possible. Besides broadening the range of usable ML methods, this aggregation yields
the additional benefit of reducing the resources required for storage and transfer, as
extracted flow features typically occupy a substantially smaller amount of space than
the concatenation of underlying packet features. Typically, data reduction is performed
based on statistical values like the mean, the median or the standard deviation.
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Several feature vectors have recently been proposed and used in the NTA literature:

• CAIA vector. As coined in [166], we use the term CAIA to refer to the feature
vector originally proposed by Williams et al. [230]. The same vector has been
commonly applied (as defined or with minimal variations) in the context of NTA,
specifically when using ML-based solutions, e.g., [226] [240] [154]. The original
CAIA vector stores bidirectional information and consists of 22 features. We
extended it to 30 features as in [154].

• Consensus vector. In [85] a set of features for NTA is selected based on a
meta-study including 71 of the most relevant, cited papers in NTA. This work
concludes with 12 relevant features. We extend them based on the considerations
discussed in [85] and [166], obtaining a final 20-feature vector.

• Cisco-Joy vector. Anderson et al. recently proposed this feature vector, which is
able to discriminate attacks in supervised learning and is suitable for encrypted
traffic [30] [31]. It contains 650 features and can be easily extracted by using the
Cisco/Joy open tool1.

• Time-Activity vector (TA). The Time-Activity vector [129] uses a 3-tuple or
5-tuple key and is unidirectional. It was devised to profile flows from a time-
behavioral perspective, allowing lightweight characterization of traffic by means of
clustering methods. The final vector is formed by 13 features.

• AGM vector. Designed for the discovery of patterns in the Internet Background
Radiation [130], this vector allows profiling traffic sources or destinations. The
basic AGM vector contains 22 features, which are extended after removing nominal
features or transforming them into dummy variables if distributions are concentrated
on few values (e.g., more than 90% of traffic uses TCP, UDP or ICMP). The extended
AGM vector is purely numerical.

The CAIA, Consensus, TA, and AGM vectors are compared in [166] for supervised attack
detection with the UNSW-NB15 [171] dataset.

2.2 Network Intrusion Detection
There is a multitude of approaches for constructing IDSs. Not only are there a vast
number of possibilities for creating taxonomies for IDSs, but also terms for describing
methods are used inconsistently. For an overview of methods, in this section we distinguish
the class of Signature-based Intrusion Detection System (SIDS) from ML-based systems.
This separation follows the taxonomy in [143]. However, while ML-based systems are
referred to as “anomaly-based systems” in [143], in this thesis we use a stricter definition
of the term “anomaly” and reserve “anomaly” for unsupervised methods that detect
anomalies and outliers in an algorithmic way.

1https://github.com/cisco/joy
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2.2.1 Signature-based Systems

We provide a brief summary of SIDS from [143]. SIDSs are based on matching patterns in
observed traffic with a database of previously known intrusions. Hence, when performing
intrusion detection based on single packets, rules for features observed in these packets
are composed to form conditional statements for when to raise an alarm. More complex
rules able to process a sequence of packets might be implemented using state machines,
formal language string patterns or semantic conditions.

For known types of intrusions, SIDSs provide several benefits like high performance in
both detection accuracy and processing speed. The main problem of SIDSs lies in their
limited capability of detecting zero-day attacks or attacks that deviate from previously
known attacks, e.g., because it is launched by polymorphic malware.

The probably most well-known SIDS application is SNORT [191].

2.2.2 Machine Learning-based Systems

ML techniques are used or tested in many application areas nowadays. In the context of
network data, an ML-based IDS promises to extract traffic characteristics from available
network data in an automated way and build a model from it. Hence, in contrast to
signature-based systems the expensive procedure of devising appropriate rules is avoided.
However, data is needed for training classifiers, which in many situations is difficult to
collect.

Two commonly used paradigms in ML are supervised learning and unsupervised learning.
In supervised learning in NID, training data consists of traffic traces for each traffic class
that should be detected during later operation. Hence, the respective traffic traces are
labeled, i.e. each packet can be associated to the respective class. A multitude of different
methods for supervised ML have been devised. In the context of NID, tree-based methods
have shown to achieve eminent detection results while being reasonably resource-efficient.
Fueled by their popularity, also Neural Networks (NNs) have been evaluated in the
context of NID and showed similarly good results.

Unsupervised learning describes methods that do not require the data to be labeled. A
well-known class of algorithms performing unsupervised learning are clustering algorithms,
which aim to find a partitioning in the provided data that reflects the true class separation.
Another class of unsupervised learning methods are outlier detection or anomaly detection
methods. Outlier detection methods aim to detect samples within the provided dataset
that deviate from all remaining samples by violating the data’s major shapes in feature
space. A variety of outlier detection algorithms have been proposed, which differ in how
an outlier is defined. Hence, it is not clear whether the samples that are exceptional in
an intuitive sense meet the outlier definition of an algorithm to be deployed.
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2.2.3 Evaluating IDSs

Despite the multitude of different concepts for constructing IDSs, it is illusive to expect
that an IDS can perfectly separate between benign traffic and attack traffic. Hence, the
question emerges how to compare different methods for constructing IDSs to select the
most suitable one.

Indeed, even this question of how to ideally evaluate an IDS is not trivial to answer, since
it heavily depends on the impact that misclassified traffic samples have, but also on the
type and frequency of occurring attacks. In the IDS domain, we frequently deal with
strongly imbalanced datasets, where benign traffic samples are much more frequent than
attack samples. It is a common misconception that the problem of dataset imbalance
can simply be alleviated by switching to specific alternative evaluation metrics. In fact,
to perform realistic evaluation, it would not only be needed to compare to what extent
attack sample proportion occurring during application is represented by the evaluation
dataset, but it would also be necessary to quantify to what extent misclassification of
attack samples is more expensive than misclassification of benign samples. Since this
information usually is not available, we have to revert to reporting readings for a selection
of different evaluation metrics to provide a good overview of detection performance.

In general, since our goal is performing only binary classification, we can revert to estab-
lished metrics from ML research. Adhering to common practice for binary classification
problems, we partition an evaluation dataset into four disjoint sets we will denote as
follows:
True Positives (TPs) denote attack samples that are correctly classified,
True Negatives (TNs) denote benign samples that are correctly classified,
False Positives (FPs) denote benign samples that are wrongly classified and
False Negatives (FNs) denote attack samples that are wrongly classified.
Adopting common practice, we will denote by TP, TN, FP and FN also the respective
sets’ sizes to keep notation concise.

Furthermore, we have to distinguish whether our evaluated classifiers report a real-valued
score for a sample being an attack or only report a binary label. In what follows, we will
elaborate on the most important metrics used in this thesis.

Binary Predictions

Even in the simplest case where binary classification is performed with a Boolean classifier
output, several metrics can be derived and are frequently used. An important example is
accuracy. Accuracy denotes the proportion of correctly classified samples within the
entire evaluation dataset. Hence,

Accuracy = TP + TN
TP + TN + FP + FN . (2.1)

In the field of NID, missed attacks can have detrimental effects, while erroneously classified
benign traffic samples can be inspected manually and thus have less extensive implications.
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To evaluate only the proportion of reported attack samples among the entirety of attacks
while neglecting the impact of false positives, we can use recall. Recall is computed as

Recall = TP
TP + FN . (2.2)

On the other hand, specific ML applications might require the reported positives to be
as free of false positives as possible, while not putting too much weight on reporting all
possible samples. In this case, precision is an important metric, which is computed as

Precision = TP
TP + FP (2.3)

and, hence, measures how clean the reported set of positives is.

In many cases, precision can be increased at the cost of recall and vice versa. Intuitively,
it is thus desirable to optimize both, precision and recall. Two approaches that come
to mind to consider both, recall and precision, is two either report the minimum of the
two metrics or to use the mean value of both. The F1 score represents an intermediate
way between both these approaches by reporting the harmonic mean between recall and
precision, since the harmonic mean of two non-negative, real-valued numbers always lies
between their minimum and their arithmetic mean. The F1 score is thus computed as

F1 = 2
1/Precision + 1/Recall = 2TP

2TP + FP + FN . (2.4)

Accuracy has the downside of providing misleading readings when working with strongly
imbalanced data. For instance, in a dataset with binary labels where 99% of samples
belong to the negative class, a degenerate classifier that always predicts the negative
label would obtain 99% accuracy. A metric that does not suffer from this shortcoming is
Youden’s J statistic, which was introduced in [237] and is computed as

J = TP
TP + FN + TN

TN + FP − 1. (2.5)

A classifier that performs random guessing is assigned a Youden’s J statistic of 0, while a
perfect classifier is assigned a value of 1. Negative values are possible, in which case the
classifier’s predictions should be flipped.

Real-valued Predictions

Many classifiers output a real-valued prediction for a flow to be an attack. Even though
in many cases this value cannot directly be interpreted as probability value, we can
order flows for their attack likelihood. A real-valued classification value can always be
converted to binary prediction by introducing a threshold value that defines the minimum
prediction value for a sample to be classified as attack. Since this thresholding operation
leads to a loss of information, IDS evaluation directly from real-valued outputs might be
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considered a more truthful approach, in particular if it is not clear how to choose the
threshold value. Here, we summarize the most important metrics for this purpose from
[63].

A metric that is often used in research is derived from the Receiver Operating Character-
istic (ROC), which plots the TP rate against the FP rate when varying the threshold.
The desirable scenario of achieving a high TP rate and, at the same time, a low FP
rate corresponds to a high area under the resulting curve. This Area under the ROC
curve (ROC-AUC), which is also sometimes abbreviated as AUC, can therefore be
used for evaluating a classification result. An interesting property of the ROC-AUC
is its probabilistic interpretation. In particular, it can be shown that the ROC-AUC
corresponds to the probability of ranking an attack flow that has been randomly picked
from the evaluation dataset higher than a randomly picked benign flow.

Another important metric is the Precision at n (P@n), which measures the precision
of reported attacks when considering the top n places. Hence, it is computed as

P@n = |{a ∈ A|rank(a) ≤ n}|
n

, (2.6)

where A denotes the set of all positives, i.e. all attacks, and rank(a) denotes a’s position
when sorting all samples in the dataset according to the reported scores in descending
order. Hence, in this definition n is a parameter, which has to be set beforehand. A
popular and natural choice is setting n to the number of positives, i.e. n = |A|. However,
since the number of positives is not known in application, we can use the obtained
positions of attack samples for n, averaging over all attacks samples. This metric is
known as Average Precision (AP) and is computed as

AP = 1
|A|

∑
a∈A

P@rank(a). (2.7)

Both P@n and AP suffer from dataset imbalance. To transform them to yield a value
of 0 for random predictions, adjustment for chance can be applied. Campos et al. [63]
provide the relations

AP@n = P@n− |A|/N
1− |A|/N and (2.8)

AAP = AP− |A|/N
1− |A|/N (2.9)

with the total number of samples in the dataset N for the Adjusted Average Precision
at n (AP@n) and the Adjusted Average Precision (AAP), respectively.

2.3 Machine Learning Methods
A vast number of methods have been proposed in the context of ML. In this thesis,
we focus on Decision Trees (DTs), Random Forests (RFs) and NNs, which have shown
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good performance in the context of NID. Additionally, the field of unsupervised anomaly
detection is highly relevant for this thesis.

2.3.1 Decision Trees and Random Forests

An important family of classification methods we use in this thesis is that of DTs and
RFs, which have shown good performance in the context of NID.

Not only in data science and ML, but also in other domains, constructing a DT constitutes
a popular method of arriving at decisions. A DT is a tree-shaped sequence of criteria
that are sequentially tested on the available information, until a leaf is reached, which
provides the desired decision.

Hence, in the field of data science, a DT can be considered a number of if conditions
tested on the provided input feature vector that are arranged in a tree-like structure.
While the classification process for a DT is markedly simple, it is the training process
that defines the behavior and performance of the resulting classifier. In this thesis, we use
the probably most popular training procedure, which involves building the tree from the
top to the bottom where at each branch the most suitable split is chosen by maximizing
a certain criterion. This criterion is the Gini impurity of the resulting dataset partitions.
To counterfeit overfitting, DTs are usually not split until leaving only single samples at
the leaves, but a stopping criterion is defined like the maximum depth or the minimum
number of samples within one leaf. In data science research, scikit-learn [179] is the likely
most popular framework for developing DT and RF classifiers. We refer to scikit-learn’s
documentation2 for an overview of popular measures for regularization.

To optimize prediction performance, DTs are frequently used in an ensemble, resulting
in RF classifiers. In this case, a multitude of DTs are independently trained and their
predictions are averaged for the RF’s final prediction. Variety in training of DTs is
achieved by feeding different randomly selected portions of the training dataset to the
individual DTs.

2.3.2 Neural Networks

Gradient descent is an efficient and popular method for finding a local extremum of a
differentiable function: By iteratively taking steps in the direction of largest descent,
input parameters of the function can be found that minimize that function’s output.

Training using gradient descent can be considered a main characteristic of Neural Net-
works (NNs). In particular, for NNs a function is constructed as composition of simple
mathematical functions, so that the resulting function is differentiable in its parameters,
but at the same time is able to express highly non-linear relations.

A simple NN is depicted Figure 2.1. Each circle in this figure depicts an affine mapping
in the indicated inputs, combined with an activation function, i.e. a non-linear function

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html
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Figure 2.1: A simplistic NN, as it might be used for binary classification.

of the resulting scalar output. Weights of all affine transformations are the parameters
that are determined during NN training using gradient descent.

Hence, the desired function is constructed in multiple layers to be able to capture a
sophisticated behavior. The Multilayer Perceptron (MLP) depicted in Figure 2.1 can be
considered the simplest example for NNs, where input values conform to a simple feature
vector and output values can, e.g., denote attack/non-attack classification.

Autoencoders A further simple and frequently used type of NN is the autoencoder.
An autoencoder is an MLP, where the NN’s input dimension is as large as its output
dimension and the NN is trained to output the same values as provided at the input.
However, at an intermediate layer the number of neurons is chosen substantially smaller
than the input’s dimension, so that input values cannot simply be passed to the output
as they are. Instead, NN training is supposed to find dependencies and structure in the
data, so that the input can be encoded into a vector of lower dimension and the original
vector can be recovered with small error. Consequently, the input-facing part of the
NN is frequently called the encoder network, while the output-facing part is called the
decoder network.

Autoencoders might be used for dimensionality reduction, e.g., for compression purposes or
as a preprocessing step for other data mining techniques. Another purpose of autoencoder
training might be running training as proxy task that does not require labeled data, so
that a trained NN can be used as basis for transfer learning of a different task.

Recurrent Neural Networks In NID, when not extracting statistical features from
flows, features have a sequential nature, since a flow consists of a sequence of packets,
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where features can be extracted from each of the packets. An RNN denotes an architecture
of NNs that is able to process sequential data. Here, packet feature values are sequentially
fed into the NN from the first packet to the last packet. Additionally, recursive connections
are added by recurrent units, so that information is passed on from step to step and the
NN is theoretically able to make a decision involving all packet features in the final step.

2.3.3 Anomaly Detection

IDSs using anomaly detection or outlier detection allow identifying attack samples
as samples that set themselves apart from the majority of network traffic. It is not
trivial to define the term “outlier” or “anomaly”. Hawkins [122] has provided a popular
definition in colloquial speech: An outlier is “an observation which deviates so much
from the other observations as to arouse suspicions that it was generated by a different
mechanism” [122]. Since this colloquial statement cannot be used to perform algorithmic
detection of anomalous samples, a wide range of algorithms have been developed to capture
outlierness in a static dataset. Using a coarse and non-comprehensive classification, many
traditional outlier detection algorithms work using either

• a distance-based definition of outlierness. Taking the most simple outlier detector
as example, the k Nearest Neighbors (kNN) rule defines the distance to the kth

nearest data point as outlier score, thus declaring points lying in a densely populated
neighborhood as inliers.

• a density-based definition of outlierness. Since the classical kNN rule suffers
from the problem of varying outlier scores with cluster density, the Local Outlier
Factor (LOF) [58] measures outlierness with respect to neighbor distances of nearest
neighbors.

• a histogram-based definition of outlierness. Intuitively, outliers lie in low-
probability regions in feature space, giving rise to a probability-based definition of
outlierness. As a simple example, the Histogram-based Outlier Score (HBOS) [101]
bases the reported outlier score on the bin width of univariate histograms of all
features.

• clustering algorithms to declare points that cannot be matched to any cluster
as outliers. Since outliers might deteriorate a clustering algorithm’s functioning,
many such algorithms have built-in means to ignore outlying points as noise.

• or the reconstruction error of an autoencoder to determine outlierness. Since
autoencoders are trained to describe the features of a data sample with a low-
dimensional encoding vector, the reasoning behind using the reconstruction error is
that reconstruction fails when a data sample’s structure does not match the one
observed in usual data. Hence, anomalous samples are supposed to be assigned a
higher reconstruction error than normal data.
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This list is only meant to provide a simple overview in popular methods. In fact, due
to the wide variety of different algorithms, many work by means that cannot clearly be
matched to one of these categories. In most cases, outlier detection algorithms report a
real-valued outlier score instead of just a binary label to indicate outlierness.

2.4 Stream Data Processing
In their nature, data samples from network traffic arrive as a stream of data. E.g.,
whenever a network flow finishes, the flow’s feature vector becomes available and should
be processed by an IDS as quickly as possible and a decision should be provided as
soon as possible. This is in contrast to many more traditional ML applications like in
visual computing or speech recognition, where a dataset is provided for training and later
evaluations only need to be performed against the trained model.

A main problem in a setting using streaming data is data volume. A rule-based IDS
likely is able to capture newly arriving data samples at a high rate. However, creation
of a dataset for training an ML classifier requires storing samples that arrived during a
long-enough time period. If samples arrive at a high rate, the accumulative volume of
the resulting dataset can become considerable or might even become prohibitive in some
scenarios.

Furthermore, another problem in a streaming scenario is concept drift. Concept drift
captures the fact that observed data changes throughout time as, e.g., users change their
behavior. Hence, to capture an accurate notion of normality, the model must be retrained
with updated data or the algorithm must allow to continuously update the model as new
samples arrive.

An exemplary simple, yet popular approach to continuously adapt a model as new data
arrives is the use of a Sliding Window (SW). For SW techniques, the most recent samples
are kept and used as model for evaluating new data, but samples are dropped and
removed from the model as soon as they become too old. For example, a simple kNN
algorithm might be implemented by assessing a newly arriving sample based on the
k nearest neighbors within a SW of the most recent N points, with k,N ∈ N being
constants. We refer to the later Chapter 3 for a comprehensive overview of methods to
handle concept drift.
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2.5 Explainable AI
Notice of adoption from previous publications (Section 2.5)
Parts of the contents of this section have been published in the following paper:

[116] Maximilian Bachl, Alexander Hartl, Joachim Fabini, and Tanja Zseby.
Walling Up Backdoors in Intrusion Detection Systems. In Big-DAMA
’19, pages 8–13, Orlando, FL, USA, 2019. ACM

Text in Section 2.5 has been composed in collaboration with Maximilian Bachl.

Different ML methods show varying qualities with respect to explaining and interpreting
predictions and decisions the model provides. For instance, a single DT of small size can
be considered as a sequence of simple yes/no questions and thus easily be interpreted. As
the tree’s size increases or when combining a large number of trees in a RF, interpretability
fades. NNs allow interpretation only in the simplest cases, especially when degenerating
a NN to a linear regressor.

Explainability methods thus aim to provide explanations for ML models that are not
directly explainable by themselves. A frequently used example is making use of a surrogate
model, which operates by training a simple, explainable ML model in the neighborhood of
the data sample, thus allowing evaluating how features influence the classifier’s prediction
for the specific data sample.

In this thesis, we focus on visualization techniques for explaining model predictions.
By providing a visual representation, such techniques yield the potential to give a very
intuitive and comprehensive overview of how certain features influence the prediction
outcome. However, if the number of features is high and model behavior is complex,
providing graphical representations that depict actual model behavior is difficult. In this
thesis, we focus on the techniques of PDPs and ALE plots.

2.5.1 Partial Dependence Plots

PDPs were proposed in [92] and visualize dependence of a model’s predictions by plotting
the Model under Investigation (MuI)’s prediction for a modified dataset for which the
feature’s value has been fixed to a certain value, averaging over the modified dataset.

If we denote by X ∈ Rn a random vector drawn from the feature space and by f(X) ∈
[0, 1] the prediction function, the PDP for the ith feature Xi can be expressed as

PDPi(w) = EX

(
f(X1, . . . , Xi−1, w,Xi+1, . . . Xn)

)
. (2.10)

Empirically, we can approximate the distribution of the feature space using the distribution
of observed samples. Hence, at a given point w, the PDP for the ith feature can be found
by setting the ith feature value in all samples in the dataset to w and averaging over the
predictions of the resulting modified dataset.
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2.5.2 Accumulated Local Effects

In real situations, datasets usually exhibit a non-negligible degree of feature dependence.
Due to feature dependence, areas exist in the feature space that are unlikely to occur.
Since a model is trained with real, observed data, the training set therefore might
not include samples for these areas. Consequently, the model’s predictions become
indeterminate for these areas, posing a problem when considering these predictions for
computing PDPs.

In an attempt to overcome this problem, it is possible to only consider samples which
are likely to occur for certain feature values, i.e. to consider the conditional distribution
of remaining features for computing explainability graphs.

ALE plots [34] make use of this idea. For the ith feature Xi, the ALE plot ALEi(w) can
be defined differentially as

d

dw
ALEi(w) = EX|Xi

(
∂

∂Xi
f(X)

∣∣∣Xi = w

)
. (2.11)

To combat ambiguity of this definition, we force ALEi(w) to have zero mean on the
domain of Xi. For empirical evaluation, we approximate the conditional distributions of
X by averaging over samples for which Xi ≈ w. In this thesis, we used the 10 closest
samples for estimating the distributions.

2.6 Specific Requirements of High-Security Network
Infrastructures

Communication networks are becoming increasingly important for critical infrastructures.
It is the tremendous importance of this type of infrastructures that gives rise to their
high demands in network security. For our current discourse, these demands lead to
more characteristics than just motivating the use of a potent IDS. In what follows, we
elaborate on these characteristics.

2.6.1 Trust in ML-based Decisions

If the stability of a large critical infrastructure depends on proper detection of attacks, but
also on avoidance of false positives, it is not sufficient to obtain a final classification from
a classifier. Instead, persons in charge need to know which properties and characteristics
have led to a specific flow being considered an attack or non-attack to judge whether the
behavior is reasonable. Only if it is possible to understand why predictions have been
performed the way they have been, trust in the respective classifier can be established,
paving the way for successful deployment in a live system.

This requirement for trust in an ML-based system therefore implies either the use of an
explainable ML model or the use of techniques that allow explaining and interpreting
predictions of ML models that would otherwise not be explainable.
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Table 2.1: Datasets used throughout this thesis.

Dataset Description Year
CIC-IDS-2017 [203] Labeled synthetically generated network traces 2017
UNSW-NB15 [170] Labeled synthetically generated network traces 2015
MAWI [69] Unlabeled network traces 2021
KDD Cup’99 [4] Labeled network-based and host-based IDS data 1999
SWAN-SF [33] Solar flare measurements 2020
Patch Tuesday [62] Darkspace network traces 2012
Thyroid Disease [13, 63] Medical data on hypothyroidism 1987
Cardiotocography [13, 63] Medical data on heart diseases 2000
Page Blocks [13, 63] Separate text from images in documents 1995

2.6.2 Network Architecture

To achieve superior security, critical infrastructures frequently incorporate security con-
siderations already in the design phase and in the layout of the network architecture. For
instance, to impede communication between arbitrary network participants, strongly seg-
mented network architectures are deployed that use firewalls or application layer gateways
to only allow necessary communication. Furthermore, specific hardware with hardened
security properties is frequently used for performing the most sensitive cryptographic
operations to securely store secret keys and thus gain security benefits.

2.6.3 Attack Sophistication

Attacks on critical infrastructures that target at ransom or are motivated by political
interests can be backed by considerable financial resources. They therefore can hardly
be compared to network attacks targeting enterprise networks of typical companies.
For instance, Advanced Persistent Threats (APTs) play an important role for security
considerations, i.e. attacks that infiltrate the network with malware that stays undetected
for a long period. Related to this kind of attack, but also as a general technique to
evade detection, also techniques for hidden communication between malware are relevant.
Techniques for hiding information in not fully used network protocol fields are called
covert channels.

2.7 Datasets

Since experimental evaluation is a main method used throughout this thesis, datasets
are required to perform evaluation in a realistic fashion. Several requirements have to be
met for a dataset to allow realistic performance benchmarks. Algorithms investigated in
this thesis are not limited to processing network data and, since we investigate several
research tasks in the thesis, we use several datasets with varying characteristics. We
show an overview of used datasets in Table 2.1.
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Our main focus being network data, we require a labeled datasets providing network data
for most of our evaluations. We used the CIC-IDS-2017 [203] and UNSW-NB15 [170]
datasets to meet these characteristics.

The CIC-IDS-2017 [203] dataset was created by the Canadian Institute of Cyberse-
curity (CIC), as they found all available datasets for NID tasks to have substantial
shortcomings. A dataset for evaluating IDSs has to be complete, realistic, representative,
diverse and heterogeneous with respect to protocols, attacks, legitimate uses and formats,
to provide realistic performance measurements [97]. The provided network captures
yield more than 2.3 million flows when preprocessed based on a 5-tuple flow key, and
contain legitimate traffic and attack traffic from botnets and DoS, infiltration, brute
force, web attacks and scanning attacks. The dataset is freely available on the Internet,
allowing reproducibility of our results. However, similar to other IDS evaluation datasets,
shortcomings have been reported for CIC-IDS-2017 [80]. We therefore avoided using
preprocessed data from the dataset directly. Instead, we used and improved tools and
scripts for flow extraction and labeling that are maintained by the CN Group at TU
Wien [164, 227], and carefully investigated the resulting labeled data.

As a second dataset for evaluating NID results, we used the UNSW-NB15 [170] dataset,
which was created by researchers of the University of New South Wales (UNSW). It
contains over 2 million flows when using a 5-tuple flow key and consists of benign traffic
and various types of attacks, together with a ground truth file. Malicious traffic contained
in UNSW-NB15 includes reconnaissance, DoS and analysis attacks, exploits, fuzzers,
shellcode, backdoors and worms. Similar to CIC-IDS-2017, the UNSW-NB15 dataset can
be obtained freely from the Internet and preprocessing tools we used can be obtained
from [164, 227] to reproduce our results.

Attacks contained in CIC-IDS-2017 and UNSW-NB15 are shown in Table 2.2.
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2. Background

Table 2.2: Flow occurrence frequency of attack types.

(a) CIC-IDS-2017

Attack type Proportion

DoS Hulk 10.10%
PortScan, Firewall 6.90%
DDoS LOIT 4.08%
Infiltration 3.30%
DoS GoldenEye 0.32%
DoS SlowHTTPTest 0.18%
DoS Slowloris 0.17%
Brute-force SSH 0.11%
Botnet ARES 0.03%
XSS attack 0.03%
PortScan, no Fw. 0.02%
Brute-force FTP 0.01%
SQL injection <0.01%
Heartbleed <0.01%

(b) UNSW-NB15

Attack type Proportion

Exploits 1.42%
Fuzzers 1.01%
Reconnaissance 0.58%
Generic 0.21%
DoS 0.19%
Shellcode 0.08%
Analysis 0.03%
Backdoors 0.02%
Worms 0.01%
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CHAPTER 3
Applying Stream Outlier

Detection to Network Data

As a potentially crucial building block for a potent IDS, we first explore to what extent
unsupervised methods can be used for attack detection. In the light of the current state
of the art, our work needs to focus on two domains to explore this question:

1. Due to the streaming nature of network traffic, streaming outlier detection tech-
niques are a good candidate for unsupervised attack detection. Several methods for
outlier detection on streaming data have been proposed in literature, prompting
the consolidation of available methods. Due to the large amount of traffic data
that needs to be processed in this application area, a main problem concerns
implementation efficiency, which needs to be addressed.

2. Furthermore, it is not yet established to what degree network attacks can be con-
sidered outlying data samples and, hence, can be discovered with outlier detection
methods. The success of this task might not only depend on which outlier detection
method is used, but also on the used feature vector, requiring a comprehensive
evaluation of different approaches for constructing an unsupervised IDS.

In the following sections, we thus explore outlier detection techniques with respect to
both aspects. In terms of the research questions we have presented in Section 1.3, in
this chapter we thus mainly focus on RQ1. Naturally, a main focus is the evaluation
of state-of-the-art methods with respect to the performance metrics we have outlined,
which requests us to perform suitable experimental evaluations, but also to develop
suitable algorithm implementations as a basis for these experiments. We also analyze the
functional building blocks of established algorithms to illuminate their suitability with
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3. Applying Stream Outlier Detection to Network Data

respect to the ability to handle concept drift and with respect to high-rate streaming
settings.

We thus begin by surveying outlier detection techniques for streaming data in Section 3.1.
Since in most cases algorithm implementations are not available that are efficient enough
for meeting the demands in this application area, we continue by designing and imple-
menting a framework that allows efficient use of existing methods in Section 3.2. We then
evaluate in Section 3.3 the combinations of several feature vectors and outlier definitions
to investigate the feasibility of attack detection with unsupervised methods.

3.1 A Comparison of Stream Outlier Detection Techniques

Data streams have to be processed in many applications and occur in various forms.
The well-known problem of spotting anomalies in streaming data processing therefore
similarly is an ambiguous one, which has been researched in many different aspects and
facets.

One particular kind of stream that occurs, e.g., in monitoring applications, in fraud
detection, IDS research, but also in medical applications, are streams where independent
multivariate data samples arrive steadily at a non-constant arrival rate. A highly relevant
anomaly detection task in this setting is detecting individual outlying samples. In an
IDS application, such samples might correspond to, e.g., malicious network traffic that
ought to be detected and blocked.

Several methods have been proposed for anomaly detection in such a setting, which
partially adopt known techniques from static anomaly detectors, but partially also devise
new approaches that are optimized for the streaming nature of such processes. However,
literature lacks a comprehensive overview of such methods for anomaly detection.

In this section, we thus survey outlier detection methods for streaming data. We provide
a systematic overview of basic building blocks of the corresponding algorithms, treating
the method for handling concept drift and the basic outlier detection method separately.
Besides discussing and comparing existing approaches, our overview thus allows to
identify new combinations of established methods and to construct new algorithms that
are customized to specific use cases.

3.1.1 Functional Principles of Outlier Detection Algorithms

We can distinguish two main aspects about the functioning of outlier detection algorithms
for streaming data, relating to spatial and temporal aspects of algorithm operation.

1. On the one hand, a method for anomaly scoring is needed, which provides the
definition of outlierness. This part corresponds to the functioning of traditional
outlier detection algorithms for static data and in many cases adopts their concepts.
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3.1. A Comparison of Stream Outlier Detection Techniques

Table 3.1: Approaches for handling concept drift.

O(1) Cut-off for old data Adaptation to new data
SWs ✓ Very fast
Reference Windows (RWs) ✓ ✓ Slow
Exponential moving averaging ✓ Fast

2. Unlike algorithms operating on static data, however, for streaming data it is
additionally needed to consider concept drift and adapt the model for continuously
arriving newly seen data.

In many cases, a simple combination of methods for concept drift and outlier detection
is used and both approaches can clearly be separated. Hence, one method is used for
continuously updating a model, which is then used as basis for outlier detection.

Approaches for Handling Concept Drift

During the operation of an outlier detector the characteristics and patterns of the
processed data are likely to change over time. Hence, while new clusters can be observed,
other clusters need to be removed as they become irrelevant. This concept drift needs
to be addressed when processing streaming data. The following methods are commonly
used for handling concept drift. We show a comparison in Table 3.1.

Sliding Windows (SWs) A simple window-based approach for handling concept drift
is remembering the most recent processed data points and applying outlier detection as
it is done for static data. Hence, this concept can be envisioned as sliding a window over
the stream of data to consider only the most recent portion of the data stream. SWs can
be implemented in two flavors:

• On the one hand, we can store the n most recently seen samples in the SW with
n being a constant algorithm parameter. This is the most natural approach in
particular when no timestamps are associated with processed data samples or when
IATs between processed samples are constant.

If data is received with non-constant IATs, this approach has the downside that the
memory length, i.e. the time span covered by the SW, is not necessarily constant
and depends on how much data arrives at a certain point in time. However, the
fixed number of samples that need to be stored eases implementation.

• Alternatively, we might be interested in enforcing a constant memory length,
accepting that the number of samples stored in the SW might fluctuate. In
particular, to provide predictable classification behavior, a memory length with
a constant cut-off time in most cases is the desired behavior. Hence, all arriving
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3. Applying Stream Outlier Detection to Network Data

samples are associated with a time of arrival and only when the age of a sample
has surpassed a certain threshold, the sample is deleted.
Depending on the scenario, this fluctuation of stored samples might be severe,
which, in particular if algorithms do not have linear computation complexity in the
number of SW samples, might cause substantial demands in hardware resources.

Beneath computational demands, a major difference between both approaches concerns
fluctuations of the point density in feature space. It strongly depends on the investigated
type of data, which of both approaches provides benefits in this respect. For instance,
if the data stream is stationary with individual clusters staying active throughout all
time, while only the amount of observed data samples varies over time, a SW with a
fixed number of samples can capture the characteristics of the data stream well and
densities within the SW do not vary substantially. In many cases, this is relevant for the
functioning of outlier detection or the expressiveness of the provided outlier score.

SWs can be considered the classical way to approach concept drift, which is used by
most outlier detectors devised so far. In particular, it is used by kNN outlier detectors
like AbstractC [233], Exact- and Approx-STORM [32] and COD [146], but also by
more modern approaches like Loda [181], RS-Hash [198] or Robust Random Cut Forest
(RRCF) [108].

Reference Windows (RWs) Another frequent windowing mechanism is that of RWs,
which is used in particular if the outlier detection method requires expensive building or
rebuilding of a model like, e.g., with tree-based methods. Since model rebuilding needs
computational effort, it is usually not possible to perform retraining after every processed
data sample. Hence, for RW-based methods retraining is only performed occasionally
after a fixed number of samples. Outlier scoring is thus based on the n samples that were
observed before the last retraining, i.e. is based on the RW.

By only requiring to perform training occasionally, training can be allowed to be a
computationally expensive procedure, which in many cases allows fast querying of the
model when scoring newly observed samples. Hence, RW methods typically provide good
runtime complexity. A downside is that a relatively old model is used for scoring given
observed samples, i.e. very recent samples are not considered in scoring a given sample.

RWs have been used for HS-Trees [216] and xStream [161]. For these methods, they bring
the benefit of avoiding having to implement means to remove outdated samples from the
trained model.

Exponential Moving Averaging With SWs having performance issues and RWs
being slow to adapt to very recent data, a windowing approach would be desirable that
does not suffer from either of both drawbacks. An approach to achieve this goal is
constructing algorithms where the model is composed of counters (e.g., counting samples
that fall into certain histogram bins) and use Exponentially Weighted Moving Average
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(EWMA). EWMA allows to avoid storing any samples after they have been processed.
Temporal influence of individual samples is of exponential shape, so that also very recent
samples are considered when processing newly observed samples.

Since the algorithm has to be constructed to use counters that allow EWMA, it is not
possible to adapt any arbitrary algorithm for static data for this kind of windowing. For
instance, in their construction of RS-Hash [198], Sathe and Aggarwal suggest a variant
using a SW, but also outline a variant using EWMA.

Approaches for Identifying Outliers

Central to a streaming outlier detection algorithm is the question how to score outlierness
of a given data sample, which provides the basic definition of outlierness. The following
approaches are used as foundation of outlier detectors proposed in literature.

Distance-based Methods The most intuitive approach to detect outliers is probably
a kNN approach, where the distance to nearest neighbors in feature space is used for
scoring outlierness. Not only is this the simplest approach for outlier scoring, it also yields
notable benefits in terms of interpretability, since the distance to neighboring samples
can be broken down to differences in specific feature values, which are immediately
understandable. Fundamentally, an important method to tune distance-based outlier
detection is the choice of the used distance function. Indeed, deviating from the default
choice of using L1 distance or L2 distance is reasonable in many cases. For instance,
if the feature space contains nominal values, the Simple Matching Distance (SMD) or
even a custom distance function is likely to be more appropriate to capture differences in
these categorical values. Also in the static domain, simple kNN is a popular approach
for performing outlier detection.

In the field of streaming data, various algorithms have been proposed for performing
distance-based outlier detection in combination with a SW. Methods of this kind include
the AbstractC [233], Exact- and Approx-STORM [32] and COD [146] algorithms. In
general, discovery of nearest neighbors is a computationally challenging problem. Algo-
rithms that have been developed therefore deviate in their way to cope with this task, but
report identical results. To achieve this goal as efficiently as possible, these algorithms
require both the required number of nearest neighbors and the radius threshold for being
considered a nearest neighbor as algorithm parameters. Based on this threshold they do
not provide a score for outlierness, but only report a binary inlier/outlier label.

In many scenarios in research, but also in application, it is desirable to obtain an outlier
score instead of only a binary label. Outlier scores in such a scenario can be constructed
in two ways:

• Using the number of nearest neighbors as fixed externally provided algorithm
parameter, the distance of the kth parameter can be interpreted as a score for
outlierness.
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• Alternatively, when fixing the search radius as externally provided algorithm
parameter, the number of neighbors contained within this radius can be used as
inverse score for outlierness.

To perform outlier scoring in these cases efficiently, a tree-based approach can be used.
While most tree-based methods for discovering nearest neighbors are optimized for bulk
data, the M-Tree [70] allows the updating of the already built tree structure and thus
can be used in a streaming scenario where data samples continuously need to be added
and removed from the SW.

Histogram-based Methods Another intuitive definition of outlierness is based on
a probabilistic model of the observed data. Histograms can be built from the observed
data and newly observed samples that correspond to low-probability regions are assigned
a high outlierness.

Loda [181] is a well-known approach for outlier detection in data streams that follows this
paradigm. Loda combines an ensemble of histogram-based detectors with the technique
of random projections. Based on their obtained performance results, the authors show
that this ensemble of weak detectors provides a strong detector of anomalies.

If histograms are built on the basis of univariate histograms and the feature space consists
of a relatively small amount of dimensions, the result of histogram-based methods can
be interpreted to a certain extent by analyzing how likely individual feature values are.
However, this simple approach fails to take feature dependencies into account, which
can deteriorate detection performance considerably. Unfortunately, when using random
projections for improving detection accuracy as done by Loda, and beyond that when
using a non-trivial ensemble of base classifiers, interpretability is lost.

Binning-based Methods Binning-based methods can be regarded a generalization of
histograms, but they lose their probabilistic interpretation. In this case, the feature space
is split into definite regions and the number of samples falling into a sample’s region is
relevant for obtaining an outlier score. In contrast to histogram-based methods, random-
ness is used to determine bins, resulting in different bin sizes for different dimensions
and for different detectors in an ensemble. This approach yields the benefit of allowing
operation at different scales.

Algorithms of this kind include HS-Trees [216], xStream [161] and RS-Hash [198]. A
main distinctive characteristic between these methods is whether dimensions are treated
independently for binning. Differences also concern the operation principle, i.e. whether
splitting is done based on chain-based or tree-based structures.

Interestingly, structures that are used as basis for splitting in all cases are built indepen-
dently of the data, which allows a-priori construction of data structures, but requires
having at least a rough approximation of the value range of the used features.
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Data structures used by such methods are highly abstract, are built in a randomized way,
and typically use ensembles for good detection performance. Obtaining interpretability
therefore is typically not viable for such methods.

Density-based Methods While not yet applied to streaming data, we also want
to point out the possibility of density-based outlier detection. In particular, the LOF
is a very popular approach for static data, which in combination with a windowing
mechanism could also be used for streaming data. However, due to the high number of
nearest-neighbor discoveries needed for outlier scoring, this approach incurs substantial
computational resources that might be prohibitive for many scenarios.

Interpretability might be achieved when assuming that the obtained local density is well
estimated by LOF, which, however, needs not to hold true in all cases. Since computations
are rather involved, interpreting the entirety of performed computations is typically not
possible.

Isolation-based Methods In static data, Isolation Forests (iForests) [156] are a
popular novel approach for outlier detection. Similar to iForests, in the streaming domain
Guha et al. have proposed the RRCF [107] approach for performing outlier detection.

When building a tree based on subsequent splits of the feature space, outliers are likely
to be separable using just a few splits due to their anomalousness. However, at the
same time they complicate the description of all remaining data, since the description
must additionally include the information that contrasts them with anomalous behavior.
RRCF thus is based on the idea that the description of remaining data becomes simpler
when removing an outlier, i.e. the number of splits decreases. In contrast to the iForest
data structure known from static data, the tree structure is optimized for steadily adding
and removing points from the tree structure as it is needed for SW operation.

Similar to binning-based methods, the used tree structures typically are highly abstract,
disallowing the interpretation of obtained results.

3.1.2 Comparison

We show in Table 3.2 streaming outlier detection methods that have been proposed in
literature. Table 3.1 shows an overview of methods for handling concept drift and depicts
their main characteristics.

Interpretability is a major research focus of this thesis. With respect to interpretability,
we thus conclude that distance-based methods allow the best and most straightforward
interpretability. Histogram-based methods allow interpretability only in the simplest
cases, which are typically insufficient for obtaining good detection results.
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Table 3.2: Outlier detection methods.
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AbstractC [233] Distance-based SW 2009
STORM [32] Distance-based SW 2007
COD [146] Distance-based SW 2011
Loda [181] Histogram-based SW ✓ ✓ ˜ 2016
RRCF [108] Isolation-based SW ✓ 2016
RS-Hash [198] Binning-based SW or EWMA ✓ ✓ ✓ 2016
xStream [161] Binning-based RW ✓ ✓ ✓ ✓ 2018
HS-Trees [216] Binning-based RW ✓ ✓ ✓ 2011

3.2 dSalmon: Efficient Outlier Detection in Python

Notice of adoption from previous publications (Section 3.2)
Parts of the contents of this section have been published in the following paper:

[120] Alexander Hartl, Félix Iglesias, and Tanja Zseby. dSalmon: High-Speed
Anomaly Detection for Evolving Multivariate Data Streams. In 16th EAI
International Conference on Performance Evaluation Methodologies and
Tools. ACM, 2023

Software development, experimental evaluation and paper writing has been conducted
by myself. Software testing and experimental evaluation was assisted by Félix Igle-
sias. All authors contributed in paper improvement, discussion of experiments and
proofreading.

In a world of ever-increasing transmission rates, performing knowledge discovery on data
streams becomes more and more challenging. Detecting anomalies and outliers being a
particularly important and well-known task for data stream processing, we now turn to
the problem of performing anomaly detection in data streams efficiently.

While algorithm implementations with low processing speed might pose a problem for
practical online processing of data, it is even more challenging for researchers. Performing
feature selection or fitting algorithm parameters, e.g. via grid search, involves a vast
amount of algorithm runs on a captured data stream, which naturally should cover a
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period that is as long as possible. Additionally, researchers often have the requirement to
test algorithms on multiple datasets. Hence, the computational ability to process a data
stream in real time is far from sufficient for research and slow algorithm implementations
become a burden or even prevent researchers from considering specific methods for a
given task.

Efficient data processing in scripting languages is mostly achieved in terms of vectorization,
i.e. computations are performed on batches of data instead of on individual scalars to
reduce the impact of interpretation overhead. Considering opportunities for vectorization,
we note a basic systematic difference when processing evolving streaming data compared
to the processing of static datasets. Due to the lack of an inherent ordering, for static
datasets, blocks of data samples can be evaluated against one and the same model, in
many cases yielding opportunities for vectorization and, hence, fast processing. The same
cannot be said about evolving streaming data. Since algorithms continuously adapt to
newly seen data, the model relevant for mining data sample n is potentially influenced
by all data samples 0, . . . , n− 1. Any attempt for faster processing by evaluating a block
of data against the same model would therefore yield inaccurate results compared to
production use, where data samples are processed one at a time at the time of their
arrival.

We present our Data Stream Analysis Algorithms for the
Impatient (dSalmon), a framework for performing outlier detection on multivariate
evolving streams of data, which has been specifically designed to process data as effi-
ciently as possible with respect to both execution time and memory footprint. dSalmon
provides a simple and intuitive Python interface to allow rapid development by data
scientists, but performs processing in C++, achieving substantial performance benefits
compared to existing implementations. It is easily extendable by deploying software for
automatically generating boilerplate code and has almost no package dependencies.

We perform a thorough comparison of dSalmon to PySAD, the only Python framework
for performing outlier detection on stream data to date. To provide a comprehensive
evaluation, we measure run time, memory usage and energy consumption when applying
several outlier detection algorithms on three different publicly available benchmarking
datasets. Our findings show that dSalmon provides substantial benefits with respect to
all measurement readings. In particular, execution time improvements by up to three
orders of magnitude can be obtained with dSalmon.

The remainder of this section is structured as follows. In Section 3.2.1, we highlight
related software projects to motivate our work by illustrating the gap in existing software
projects our dSalmon fills. In Section 3.2.2, we then discuss design objectives, our resulting
architectural design and the interface of dSalmon. To demonstrate that substantial
performance benefits can be obtained with our deployed architecture, we proceed in
Section 3.2.3 with a comprehensive experimental evaluation and comparison of resource
consumption when using our framework.
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Figure 3.1: Available methods for streaming outlier detection.

3.2.1 Related Projects

The most important software project related to dSalmon is the recent PySAD [234]
framework, which similarly targets the processing of streaming data in Python. PySAD
provides several methods for outlier detection on data streams and is entirely written in
Python. Some of the outlier detectors PySAD provides wrap existing Python solutions,
like, e.g., the PyOD [245] framework or scikit-learn [179]. In this thesis, we compare
runtime performance with PySAD, since algorithms implemented in PySAD are similar
to the ones we provide.

For outlier detection tasks, PyOD [245] or scikit-learn [179] can also be used directly.
PyOD is a popular Python package that provides several methods for outlier detection.
Unlike dSalmon, it targets methods for processing static datasets rather than streaming
data. Several outlier detectors for static datasets are also provided by scikit-learn, the
most popular Python framework for ML and data mining.

An important software project for processing streaming data is the MOA [51] framework
implemented in Java. Algorithms provided by MOA are not limited to outlier detection,
but cover several fields of data mining like clustering and classification. Several outlier
detectors for streaming data are implemented in MOA, which, however, are limited
to a distance-based outlier definition and provide only binary labels instead of outlier
scores. In dSalmon, we additionally implement several recent approaches for stream
outlier detection like ensemble-based methods. MOA is meant to be used as a stand-
alone application rather than a programming library. Since implemented algorithms
additionally differ severely from algorithms implemented in dSalmon, we do not include
MOA in our experimental evaluations.

In the Java community, also the ELKI [201] framework is worth mentioning. ELKI
provides a comprehensive selection of data mining algorithms. However, similar to PyOD,
it focuses on the processing of static datasets instead of streaming data processing.
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3.2.2 Architectural Design and Interface

We now describe how we engineered dSalmon to optimize usability for research on
streaming data processing. To motivate our architectural design, we start by depicting
software goals and resulting design decisions.

Design Decisions

We primarily target researchers working with streaming data who aim to develop or
optimize systems and algorithms and therefore possess offline datasets of captured data
streams. Here we present the objectives that motivated our design decisions for dSalmon.

• High Speed Data Processing. A primary objective is the optimization of
execution time of the algorithms provided by dSalmon. This is especially important
for researchers who conduct tests with different algorithms and parameters, aiming
to make an informed decision about the best parameterization.
Design Decision: In order to achieve high-speed processing, the core of dSalmon
is implemented in C++. Furthermore, a spatial indexing data structure is used
whenever nearest neighbor and range queries are required.

• Straightforward Usability. In the field of data science, Python is a commonly
used language. Many tools provide Python interfaces and researchers often develop
algorithms in Python. Therefore, despite being largely implemented in C++, we
aimed to provide a familiar, pythonic interface.
Design Decision: For outlier detectors, we adhere to the known interface of
scikit-learn, which also has been adopted by PyOD.

• Processing of Recorded Data. While in the application phase data samples
have to be processed one at a time, during algorithm development and parameter
tuning, researchers commonly can make use of datasets consisting of previously
collected streaming data. If desired, dSalmon allows providing blocks of data as
input to achieve superior processing speed. In such cases, to accomplish a behavior
equivalent to application phases, the implementation must guarantee to be invariant
of the used block size.
Design Decision: To achieve efficient processing and provide block size invariance,
we process block samples sequentially within our fast C++ backend.

• Support for Efficient Ensemble Learning. In recent research, it has become
common to construct data mining algorithms by pooling the results of an ensemble
of weak learners, thus providing opportunities for embarrassingly parallel processing.
These opportunities for parallelization have to be passed on the user, allowing a
substantial speedup on modern computing hardware.
Design Decision: We allow configurable parallelization by simply setting an
n_jobs parameter.
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• Reproducibility. In order to support reproducibility of results, results obtained
from randomized algorithms have to be parameterized by a random seed, so that
results are deterministic and reliably reproducible when providing the same seed
value. Changing the used block size or the number of parallel computing threads
has to leave the obtained results unaffected.
Design Decision: We support parameterization of randomized algorithms by a
random seed.

• Simple Installation and Maintenance. To reduce the surface for version
incompatibilities and provide an uncomplicated installation, it is highly beneficial
to keep the number of software dependencies small.
Design Decision: For installing dSalmon, we only require NumPy [113]. While
dSalmon uses SWIG [44] for generating Python wrapper code and makes intensive
use of Boost [109], the permissive licenses of SWIG and Boost allow us to ship any
code required for compilation together with dSalmon.

Besides the above goals, it is also worth elaborating on some aspects that we explicitly
do not pursue in the development of dSalmon.

• Algorithm Modifications. A clear non-goal is the optimization of any of the
implemented algorithms for outlier detection accuracy. Such improvements inher-
ently depend on the specific problem under investigation and, hence, are difficult to
be made in an objective way. Rather, we follow the descriptions of the respective
algorithm authors as closely as possible, so that users of our framework can be
confident to deploy an established, well-tested method that has typically undergone
the peer review process, for their research tasks.

• Code Redundancy. We see the focus of our framework in filling an important
gap by providing highly efficient processing for streaming data. On the other
hand, for several recurring tasks of data analysis and processing, well-functioning
and comprehensive tools are provided by existing frameworks like NumPy [113],
scikit-learn [179] or SciPy [224], or can trivially be implemented in a fast, vectorized
manner. We explicitly avoid reimplementing tools that are already provided by
established software projects to keep our code base narrow and relieve the user from
having to choose between competing implementations. For instance, comprehensive
metrics for evaluating the quality of an obtained outlier scoring are provided by
scikit-learn, like, e.g., the ROC-AUC score or the P@n score.

Architecture

Considering design decisions in the previous Section 3.2.2, it was of importance for us
to allow use of dSalmon from a programming language that is known and used by data
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Figure 3.2: Architecture of dSalmon.

science researchers. For this reason, we targeted the Python programming language,
which allows efficient and swift data science development.

Traditional data mining algorithms for static data in many cases have at least limited
opportunities for vectorization. Therefore, algorithms for static data often allow efficient
implementations from an interpreted language like Python directly. However, when
processing a data stream the model has to be adapted for each processed point, inherently
making vectorization hardly feasible, if not impossible.

To provide superior processing speed while allowing use from Python directly, dSalmon
therefore implements core algorithms in C++, but provides interfaces to the algorithms
from both C++ and Python.

Figure 3.2 depicts the architecture of dSalmon. Hence, the core algorithms layer depicted
in Figure 3.2 is implemented in C++. We use C++ template programming for instanti-
ating single and double precision floating-point variants of all algorithms. Researchers
can thus achieve a smaller memory footprint and faster processing times by falling back
to single precision processing if required. Since loop iterations are fast in C++, the core
algorithms C++ interface accepts individual samples instead of blocks of data.

On the other hand, looping over individual samples in Python would incur a substantial
performance penalty. Hence, the C++ vectorization layer in Figure 3.2 accepts blocks
of streaming data and iterates over samples within each block when passing on the
data to core algorithms. Additionally, the vectorization layer ensures that opportunities
for parallel processing are efficiently taken by, for example, executing base detectors of
ensemble methods in parallel.

For generating the actual interface between Python and C++, we deploy the SWIG [44]
tool. The benefits of deploying SWIG are that the code base of dSalmon can easily be
extended, leaving the generation of boilerplate interface code to SWIG. Since SWIG
supports a wide range of target languages, our approach additionally yields the possibility
to create bindings for further programming languages like R without having to rewrite
core algorithms.

The Python interface layer depicted in Figure 3.2 finally accepts blocks of streaming data
from user code. It accomplishes the tasks of ensuring a clean, pythonic interface and
performs several sanity checks on the provided data blocks.
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Listing 3.1: An example for finding the 5 most outlying points using dSalmon.
from dSalmon . o u t l i e r import HSTrees
import numpy as np

de t e c t o r = HSTrees ( window=500 , n_est imators =100 , n_jobs=4)
data = np . load ( " data . npy " )
o u t l i e r _ s c o r e s = de t e c t o r . f i t _ p r e d i c t ( data )
o u t l i e r s = np . a r g s o r t ( o u t l i e r _ s c o r e s ) [ −5 : ]
print ( " O u t l i e r s : " , o u t l i e r s . t o l i s t ( ) )

We genuinely believe that source code should be publicly available and therefore distribute
dSalmon under the LGPL 3.0 license, which permits widespread use, but requests
developers to keep modified versions open-source.

Using dSalmon for Outlier Detection

Listing 3.1 shows an example of performing outlier detection with dSalmon. In this
example, the rows of data are interpreted as sequentially arriving samples of a data
stream.

As alternative to the depicted listing, a user might similarly call fit_predict()
sequentially with blocks of consecutive rows, or even iterate over rows in data individually.
Since data rows are iterated by dSalmon, all three approaches provide equal results.
Choosing a too small block size, however, might result in substantially slower processing.
As described in Section 3.2.2, block size invariance is crucial for evaluating algorithms in
a realistic manner.

M-Tree Indexing

When developing algorithms for data mining, a frequent task is to find nearest neighbors
in a large set of points. This requirement gave rise to the development of various indexing
data structures for performing nearest neighbor and range queries efficiently. However,
many indexing trees are optimized for tree construction from bulk data and do not allow
removing points and inserting new points after the tree has been built. In particular,
this limitation applies to the popular KDTree and BallTree data structures provided by
scikit-learn [179].

dSalmon implements an M-Tree [70] spatial indexing data structure for its internal use,
which allows efficient nearest neighbor and range queries in metric spaces. By using an
M-Tree, dSalmon thus allows to modify the tree after it has been built.

To allow algorithm development from Python, we provide a Python interface for directly
using an M-Tree in custom algorithms. Similar to our further implementations, we
ensured that parallel processing capabilities can efficiently be made use of and allow
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partially parallelized tree building and fully parallelized tree querying in an uncomplicated
way by simply setting respective parameters.

3.2.3 Experimental Evaluation

In the following, we present results from an extensive experimental evaluation that
we have performed to compare resource consumption of dSalmon with PySAD. Our
algorithm benchmarks have been performed on desktop machines equipped with Intel
i7-4770 processors, 16GB of main memory and no configured swap space. All machines
used for evaluation have an equal setup. We use CPython version 3.7.3 and Debian Buster
with kernel version 4.19.0. To avoid distorted measurements, we avoided any simultaneous
use of the machines and shut down background processes as far as possible. For measuring
energy consumption, we used the Running Average Power Limit (RAPL) [73] feature of
our Intel CPUs, and sum memory and processor power consumption. Reported execution
times do not include the time needed for loading the dataset into memory.

For performing realistic benchmarks, we selected publicly available datasets representing
multivariate streaming data:

• The SWAN-SF [33] dataset provides measurement data on solar flares. To follow
established preprocessing steps for SWAN-SF, we used preprocessing scripts avail-
able on the Internet [18], extracting the same features that repository authors used
in their examples. The preprocessed dataset consists of 331,185 data samples with
12 features per sample. For assessing outlier scores, we have assigned a normal
label to the majority class and marked remaining classes as outliers.

• The KDD Cup’99 [4] dataset is an established dataset for outlier detection, contain-
ing host and network based features for detecting attacks in computer networks.
We marked attack samples as outliers over normal traffic and used one-hot encoding
for nominal features. The resulting dataset has 4,898,431 data samples with 52
features each.

• The CIC-IDS-2017 [203] dataset, which has been introduced in Section 2.7, similarly
aims at detecting network attacks, but only provides network traffic, making
unsupervised attack detection substantially harder. We used an established feature
vector for network traffic [230] together with publicly available preprocessing
scripts [164] and considered network attacks as outliers over normal traffic. The
resulting preprocessed dataset has 2,317,922 data samples and 33 features.

We selected PySAD as framework to compare it against dSalmon and performed all
benchmarks using double-precision floating point processing. As described in Section 3.2.1,
further software projects exist for handling outlier detection tasks. However, the majority
of these projects do not provide methods for processing streaming data. Furthermore, as
well as with dSalmon, PySAD can be used from Python.
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Figure 3.3: Execution time comparison for nearest-neighbors-based streaming anomaly
detection.

Nearest-Neighbors Algorithms

A simple approach for establishing the outlierness of arriving data points is counting the
number of nearest neighbors within a pre-determined radius. Hence, in many traditional
publications [233, 32, 146] an arriving data point is declared to be an outlier if less than
k ∈ N point of the current SW lie within a radius R ∈ R+. While modern approaches for
anomaly detection frequently outperform this simple nearest-neighbors-based approach
in both, detection accuracy and execution time, the importance of a simple nearest-
neighbors-based approach lies in its unrivaled interpretability of provided outlier scores,
making its availability crucial for dSalmon.

While providing a binary label in some cases is sufficient in practice, for research and
parameter selection it is usually necessary to obtain a score for outlierness for data
samples. As described in Section 3.1, when requiring an outlier score instead of a binary
label, distance-based outlier detection can be performed in two flavors:

1. When implementing a SW-based kNN rule, outlier detection can be parameterized
by the neighbor count k, providing the distance to kth nearest point as outlier score.

2. Alternatively, outlier detection can be parameterized by the search radius R,
providing the number of neighbors within R as inverse outlier score.

dSalmon allows outlier detection using both flavors (1) and (2), termed SW-KNN and
SW-DBOR, respectively, and deploys M-Tree [70] indexing to reduce execution time.

Figure 3.3 shows the execution times of the ExactStorm model of PySAD, which similarly
implements nearest-neighbors-based outlier detection, and the SW-DBOR model of
dSalmon for different lengths of the SW. Since PySAD provides nearest-neighbors-based
outlier detection only in flavor (2), we use this mode of operation also in dSalmon for
the comparison. To provide a meaningful comparison, for each individual window size
we used grid search on a logarithmic scale for finding the radius R that optimizes the
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ROC-AUC score when applying the algorithm to the complete dataset, and used the
resulting R for performing the benchmark.

Execution time benefits demonstrated in Figure 3.3 can be explained by two effects: On
the one hand, for small window lengths execution time is dominated by interpretation
overhead of the Python language for PySAD, which can be avoided by dSalmon due to its
C++ core implementation. However, PySAD performs distance computations for each
processed data sample in a vectorized manner, diminishing the interpretation overhead
as the window length increases.

As shown in Figure 3.3, dSalmon is able to retain a substantial speedup even as window
size increases. This observation demonstrates execution time benefits of M-Tree indexing
compared to straight per-sample distance computations.

Ensemble-based Outlier Detectors

In recent research, an increasingly popular approach for outlier detection, which sets
new records in detection accuracy, is to construct algorithms by averaging outlier scores
obtained by an ensemble of weak learners. Beneath yielding good accuracy, this approach
is intrinsically embarrassingly parallel, as the processing of distinct base detectors can
trivially be distributed to several workers. dSalmon makes it easy to leverage this feature
by simply setting an n_jobs parameter.

When evaluating execution performance, for the sake of providing a fair comparison, we
chose algorithms whose specification leaves little room for interpretation. In particular,
we selected the following methods:

• RRCF [108] uses an ensemble of dynamically constructed trees, where each tree
performs random cuts based on the feature space of observed samples. Concept
drift is taken care of using a SW approach. We perform runs with varying window
sizes to show dependence on this parameter.

• Half-Space-Trees [216] similarly constructs an ensemble of trees, but performs tree
construction statically at the time of algorithm initialization. Concept drift is
considered based on a RW approach. In our experiments, we vary the depth of
the constructed trees to evaluate influence of tree depth on resource usage. Since
PySAD does not support setting the sizeLimit parameter described in [216], we
similarly set sizeLimit=0 for dSalmon.

• xStream [161] is a recent method for outlier detection, which introduces half-space-
chains, which find an anomaly score by splitting randomly selected features with
varying precisions. xStream combines half-space-chains with the technique of

1Missing results for RRCF using PySAD indicate experiment runs that failed due to reaching Python’s
recursion limit.

2xStream for KDD Cup’99 using PySAD with 50 random projections failed due to running out of
memory.
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Figure 3.4: Overall comparison of the resource consumption of several outlier detectors
implemented by dSalmon and PySAD. For each parameter setting, values are normalized
to results obtained by single-threaded dSalmon for better comparison. Bars depicted
for each algorithm parameterization indicate results for SWAN-SF, KDD Cup’99 and
CIC-IDS-2017 in this order.

random projections. For benchmarking, we set the chain length to 15 as used for
the evaluations in [161] and vary the number of projections to show dependence on
this parameter.

In our experiments, we use an ensemble size of 100 for all algorithms, which is similarly
used as default value for ensemble methods by scikit-learn. Using 100 base estimators as
ensemble size is a natural choice and is likely to reduce statistical variation of outlier
scores to an acceptable level. For dSalmon, we evaluate performance for both single-
threaded operation and when utilizing four processor cores. PySAD does not support
multi-threaded operation.

In Figure 3.4 we depict a summarized comparison of resource consumption that we
measured while performing outlier detection with dSalmon and PySAD on the SWAN-SF,
KDD Cup’99 and CIC-IDS-2017 datasets, also including the results already presented
in Section 3.2.3. We depict execution time, memory usage as maximum Resident Set
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Figure 3.5: Time, memory and outlier detection performance for HS-Trees using a tree
depth of 10.

Size (RSS) and energy consumption. Since we aim to depict relative performance when
using both frameworks, we normalize all measurements by results obtained when using
dSalmon on one processor core.

Figure 3.4 shows that, particularly for modern ensemble-based algorithms, dSalmon
yields substantial execution time benefits compared to PySAD. For most algorithm
runs, a speed-up by a factor of more than 100 can be obtained. From Figure 3.4 we
can additionally conclude that dSalmon makes highly efficient use of parallel processing
capabilities. Execution time indicates that, by using four simultaneous jobs, a speed-up
of almost 4 can be obtained in most cases. Furthermore, memory consumption does
increase when relying on parallel processing, allowing highly efficient operation on modern
multi-core desktop machines or servers. It is also interesting to note that by relying on
multi-threaded processing considerable energy savings can be obtained.

In what follows, we will analyze behavior for specific algorithms in more detail. We skip
RRCF for closer analysis, as for RRCF many PySAD runs failed due to reaching the
maximum recursion limit. This error cannot be fixed trivially, since increasing CPython’s
maximum recursion limit can result in overflowing the program stack [232]. Furthermore,
since algorithm runs performed with SWAN-SF indicate a severe dependence of window
size, we find the RRCF implementation adopted by PySAD generally not suitable for
analyzing datasets of large size.

Half-Space-Trees Figure 3.5 shows the absolute measurement readings that we ob-
tained for HS-Trees with a tree depth of 10. In the light of execution times in Figure 3.5 (a),
we can generally attest HS-Trees’ outstanding run time performances, since HS-Trees is
able to process millions of data samples in about 10 seconds.

It is worth noting that, besides obtaining markedly different execution times, we also
obtained deviating results for detection performance when deploying dSalmon and PySAD,
as shown in Figure 3.5 (c). Since outlier scores are averaged from 100 base detectors, it
is unlikely that these differences are the sole result of inherent algorithm randomness.
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Figure 3.6: Runtimes of HS-Trees in response to variations of the tree depth.

Attempting to find the reason for this deviation, we analyzed implementation details
of HS-Trees in PySAD and noticed deviations in the computation of outlier scores.
In particular, outlier scoring in PySAD’s HS-Trees deviates slightly from the method
described in [216], as it bases the reported outlier score on all traversed nodes instead of
just the terminal node. dSalmon, on the other hand, computes outlier scores only from
terminal nodes as described in the original publication introducing HS-Trees [216].

Figure 3.5 (c) additionally demonstrates reproducibility of obtained results for dSalmon.
Hence, for both independent algorithm runs – one utilizing one processor core and another
utilizing four cores – the precise same outlier scores are reported, since the same seed
value has been provided as parameter. This holds true even though both runs differ in
their parameterization for parallel processing. We have verified this property also for all
further runs depicted in Figure 3.4.

In Figure 3.6, we depict absolute execution times as function of tree depth. Hence,
dSalmon is approximately 100 times faster than PySAD and execution time shows only
a slight increase when increasing the tree depth. In fact, rather memory occupation is
limiting the usable maximum tree depth, since for HS-Trees tree structures are statically
created, resulting in memory consumption that increases exponentially with tree depth.

xStream Figure 3.7 shows absolute execution times und maximum RSS as function
of the number of projections for xStream. As discussed by the algorithm authors [161],
execution time depends linearly on ensemble size, chain length and the number of
projections. Hence, observed behavior for our dSalmon runs is reasonable. We notice that
PySAD shows a less pronounced dependency of the number of projections. Consequently,
execution time differences of dSalmon range between 20 and 200. dSalmon proves to
make highly efficient use of parallel processing, allowing a 4-times speed-up by using 4
parallel jobs.

For the PySAD implementation, dependence of memory consumption as a function of
the number of projections, as depicted in Figure 3.7, is particularly striking. While for
SWAN-SF memory consumption shows no clear dependence of the number of projections,
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Figure 3.7: Runtimes of the xStream algorithm in response to variations of the number
of projections.

for KDD Cup’99 a clear monotonic dependence can be observed. For 50 projections,
xStream eventually fails on our 16GB machine due to running out of memory.

Analyzing implementation details in PySAD and comparing to dSalmon’s implementation,
we noticed that both implementations differ in the technique for counting bin frequencies.
Algorithms authors [161] suggest using a Count-min sketch (CMS) [71] for this purpose
to ensure constant space complexity. In dSalmon, we adopt the approach of using CMSs,
while PySAD uses classical hash tables. The use of hash tables for this purpose provides
an explanation for the data-dependent memory consumption observable in Figure 3.7,
since memory consumption in this case is reduced if the majority of data samples shares
a small number of bins.

In dSalmon, memory requirements for storing CMS structures are independent of the
number of projections. The increase of memory consumption can thus be explained by
the memory requirements for storing projected values for a given block of data.

3.2.4 Discussion

We have introduced and presented dSalmon, a highly efficient framework for outlier
detection on multivariate evolving data streams. Due to the nature of streaming data,
data samples frequently accumulate to a substantial volume within short time, making
efficient processing crucial. We have presented dSalmon’s architecture, which allows
easy extension and enables researchers and practitioners to add algorithms for outlier
detection of even implementing entirely different methods for analyzing streaming data.

In a thorough evaluation, we have shown that dSalmon was able to outperform existing
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Python stream outlier detectors by up to three orders of magnitude with respect to
execution time. Combined with the selection of a recent outlier detection method
optimized for processing high-rate data streams, gigabytes of data can be processed in
few seconds, paving the way for analyzing comprehensive datasets, which increasingly
become available due to advances of modern technology.
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3.3 Applicability of Outlier Detection Methods to Attack
Detection

Notice of adoption from previous publications (Section 3.3)
Parts of the contents of this section have been published in the following paper:

[131] Félix Iglesias, Alexander Hartl, Tanja Zseby, and Arthur Zimek. Are
network attacks outliers? a study of space representations and unsuper-
vised algorithms. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 159–175. Springer, 2019

Experiment execution has been conducted by myself, experiment design was joint
work with Félix Iglesias. Text writing has mainly been performed by Félix Iglesias.
All authors contributed in discussion of experiments and in proofreading of the
manuscript.

After having had a general look at outlier detection for streaming data, we now turn to
the problem of performing NID using outlier detection methods. The study of previous
research on network security analysis [86] discloses three main claimed goals: (a) attack
detection, (b) anomaly detection, and (c) traffic classification. These three topics are
not the same, but undoubtedly overlap. For instance, traffic classifications often include
classes that are attacks. An anomaly might be an attack, but an attack does not
necessarily show itself to be an anomaly. The traffic features selected for the analysis
obviously play a determining role to see if a network attack expresses itself as an anomaly
or not, but also the analysis perspective is relevant [200]. For example, Distributed
Denial-of-Service (DDoS) attacks usually appear as anomalous peaks in network monitors
that observe traffic as time series [83]. However, they are hardly anomalies from a
spatial perspective, in which they can take a significant portion of the total captured
traffic. DDoS attacks try to harm targets by bombarding them with false connection
requests. Actually, DDoS and other types of illegitimate traffic (e.g., scanning activities)
have become so common that they can rarely be considered anomalies in most networks
anymore [129, 76].

When the term “outlier” comes into play, things become even more confusing. “Anomaly”
and “outlier” are not smooth synonyms, and even the description of outlier can be
ambiguous in practical implementations [246]. For instance, it is common to find small
groups of close traffic instances that are distant from the data bulk. Together, they
form an outlying cluster. Considered individually, instances can be deemed as outliers
or not. Even in spite of such ambiguities, in related research the meaning of anomaly
is commonly assumed without discussion. Carefully reviewing such works in the field
of IDSs (and excluding time series analysis), the empirical meaning of anomaly inferred
from experiments habitually corresponds to network attacks that show outlierness. Some
authors identify attacks as anomalies and perform their detection with outlier-based
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techniques [50, 100, 242]. In addition, many outlier-based detection proposals appear in
other field surveys [49, 59, 140].

Nevertheless, do network attacks actually show themselves as outliers or outlying clusters?
This is the crucial point that will make unsupervised methods effective for attack detection
or not. Related works frequently take it for granted, but the question must be analytically
answered, considering that most attacks are designed to pass unperceived. As a starting
point, we highly recommend that research works on anomaly detection in NTA clearly
establish their definition of anomaly. Otherwise, whenever theoretical proposals are
implemented into real scenarios – far from laboratory conditions – such methods are
prone to trigger detection alarms in view of many harmless, meaningless, noisy instances.
This discussion is critical because precisely unacceptable high false positives rates is what
slows down the adoption of ML in real-world network attack detectors [95, 99]. If this is
true for supervised ML, it is even more severe for unsupervised methods, which are also
commonly evaluated with the same IDS datasets (e.g., [50, 100, 242]). Note that IDS
datasets are usually not designed to match realistic ratios between normal and attack
traffic, but to offer a variety of attack classes with sufficient representation in the dataset
[96]. This is not ideal for unsupervised methods because they work by learning from
the sample placement and space geometries drawn by the analyzed data. From here,
and without considering irrelevant, easy-to-detect, illegitimate traffic that has become
common, it naturally follows that the real-world ratio attack/non-attack is going to be
considerably lower than in IDS datasets. Therefore, the probabilities for a detected
anomaly to be an actual attack drop dramatically. How the base-rate fallacy affects IDSs
was already advised by Axelsson in [38].

The previous observations do not imply that unsupervised methods are not valid for attack
detection. Instead, they introduce the necessity for evaluating the outlierness of network
attacks and for investigating if unsupervised methods suffice by themselves for the actual
detection in real implementations. Signature-based detection or supervised approaches
are limited in detecting novel threats and zero-day attacks. Therefore, the contribution
of unsupervised approaches is deemed highly valuable. As already discussed above,
a last challenge that unsupervised methods must additionally face is their traditional
high computational complexity. Most popular outlier detection algorithms are naturally
instance-based and show considerable time and memory demands [180, 63]. Network
traffic analysis for attack detection must be fast and lightweight, since it must deal
with ever-growing volumes of traffic (big data, streaming data), and is expected to react
promptly when malicious instances are discovered.

The main contribution of this section is answering the following questions:

• Are network attacks outliers? We study five popular and recent space repre-
sentations used in IDS applications and experiment with five popular and recent
unsupervised outlier detection algorithms in order to elucidate if network traffic
attacks show a distinguishable outlier nature.
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Figure 3.8: A quick overview of how the studied algorithms estimate the outlierness (oa)
of a random point a.

• What are the most suitable feature representations for attack detection?
We investigate which existing feature vectors perform best in conjunction with
outlier detection.

• Is the observed outlierness sufficient as indicator for implementing real-
world attack detection? We discuss if the detected outlierness suffices for
implementing effective detectors in real environments. Additionally, we propose a
new vector that maximizes attack/non-attack separation.

We note that in this section we perform our evaluations with established outlier detectors
for static data instead of streaming data. This decision is motivated on the one hand
by practical limitations of available datasets, which not only in most cases cover only
very short durations, hence, the temporal sequence of benign and attack traffic does not
represent realistic application scenarios. On the other hand, we are also interested in
which outlier definitions conform to attack traffic. The window mechanism, however,
which becomes relevant in practice, is orthogonal to the basic outlier definition and can
be designed to meet the demands of a particular application.

Our experiments are conducted on the CIC-IDS-2017 dataset [203] we introduced in
Section 2.7, which is one of the most complete, reliable IDS evaluation datasets to
date. As for the selected features, we study five vector spaces created by the CAIA
[230], CISCO-Joy [31], Consensus [85], TA [129] and AGM [130] formats. Outlierness
ranks are obtained by using five different algorithms: kNN [185], LOF [58], HBOS [101],
iForest [155], and Sparse Data Observers (SDO) [133].

3.3.1 Outlier Detection Algorithms

In this section, we briefly introduce the used outlier detection algorithms. We have
already introduced some of the principles outlined here in Section 3.1. However, in this
section we put emphasis on concrete outlier detection methods as they are used for static
datasets. A visual overview of the different approaches is shown in Figure 3.8.

k Nearest Neighbors (kNN). The kNN distance has been used for measuring object
isolation in [185], where each instance outlierness is ranked based on the distance to its
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kth nearest neighbor. kNN is an instance-based method where estimations are locally
approximated. It does not require training and the computational effort appears every
time that a new instance must be evaluated and compared with the previous ones. kNN
requires setting a k parameter.

LOF. The Local Outlier Factor (LOF) algorithm entailed a considerable enhancement in
the task of measuring instance outlierness within data [58], generating a varied family
of derived algorithms [200]. LOF compares the density estimate based on the k-nearest
neighbors with the density estimates for each of the k-nearest neighbors, thus adapting
to different local densities. LOF is also an instance-based method and does not require
training. In a recent comparison, LOF has shown to be a good benchmark solution,
which, in general, has not been significantly outperformed by more recent methods in
terms of accuracy [63]. LOF uses the MinPts parameter, which is equivalent to k in kNN.

HBOS. Histogram-based Outlier Score (HBOS) [101] is a simple, straightforward algo-
rithm based on evaluating the feature empirical distributions of the analyzed dataset
(i.e., histograms for continuous features and frequency tables for nominal features). Since
it assumes feature independence, it sacrifices precision to achieve fast performances in
linear times. Outlierness is calculated based on the relative position of the instance
feature values with regard to the obtained empirical distributions. HBOS does not require
parameterization, but for the histogram binning, which allows static bin-widths (k equal
width bins) or dynamic bin-widths (in every bin falls N/k instances, being N the total
number of instances). In our experiments throughout Section 3.3, bins-widths are static.

iForest. Isolation Forest (iForest) [155] is a model-based outlier-ranking method that
shows linear time complexity with low memory requirements even in front of large
datasets. The operation principle is as follows: For a given instance, features and splits
are randomly selected in a procedure that progressively reduces the range of feature
values until the instance is isolated (i.e., the only instance in the remaining subspace).
The number of splits defines the outlierness value of the instance, since outliers are
expected to be easier to isolate (less splits) than inliers (more splits). The partitioning
procedure can be abstracted as a tree (an iTree), therefore an iForest provides the
weighted evaluations of a set of iTrees. During training, iTrees are built using the training
dataset; in application phases, instances pass through iTrees to obtain outlierness scores.
iForest parameters are: t, the number of estimators or iTrees; ψ, the sample size to train
every iTree; and f , number of features passed to each iTree.

SDO. The SDO algorithm is a model-based unsupervised outlier-ranking method that
has been designed to provide fast evaluations and to be embedded in autonomous
frameworks [133]. SDO is conceived to avoid the common bottleneck problems implied
by traditional instance-based outlier detection when a continuous evaluation of incoming
instances is demanded. SDO creates a low-density data model by sampling a training
population. During training, model instances – called observers – are evaluated in a
way that low-active observers are removed. Thus, the low-density model becomes free of
potential outliers. In application phases, observers provide instance outlierness based on
joined distance estimations. SDO is lightweight, easy to tune, and makes the most of

50



3.3. Applicability of Outlier Detection Methods to Attack Detection

pre-knowledge. SDO parameters are intuitive and stable, rule of thumb parameterization
works well in most applications. Parameters are: k, the number of observers; x, the
number of closest observers that evaluate every instance; and q (or qv), which establishes
the threshold for the removal of low-active observers.

3.3.2 Data and Evaluation of Results

We used the CIC-IDS-2017 dataset as described in Section 2.7. The CIC-IDS-2017 dataset
is recent, meets several quality criteria and contains a range of different attack types,
providing ideal conditions for our undertaken task in this section.

To base our evaluations on known and commonly used flow representations, we used
the CAIA, Consensus, TA, and AGM vectors as outlined in Section 2.2.2. Table 3.3
summarizes feature vectors in the format used here. We apply the nomenclature described
in [166]. We refer the interested reader to the original papers for detailed descriptions.

For evaluating algorithms, we have used the same metrics applied by Campos et al.
in their recent outlier detection algorithm comparison [63], which we summarized in
Section 2.2.3. We additionally provide the maximum F1 score [182] as additional metric
to handle dataset imbalance.

3.3.3 Experiments

This section describes the conducted experiments. Henceforth, we refer to the feature
formats as the subset F and the used algorithms as the subset A:

F = {CAIA, Consensus, TA, Cisco-Joy, AGM} (3.1)

A = {kNN, LOF, HBOS, iForest, SDO} (3.2)

We describe the experiments step-by-step:

1. Flow extraction From CIC-IDS-2017 network traces, we extracted features to
match the studied representations. Therefore, for each vector format we obtained a
structured dataset Di with i ∈ F , containing the respective features plus a binary label
(attack, non-attack) and a multiclass label (attack family). Feature vectors were extracted
with the go-flows [227] feature extractor.

2. Cleaning and normalization We removed nominal features from preprocessed
datasets (see Table 3.3), except for the “Protocol”, which was transformed into the
dummies “TCP”, “UDP”, “ICMP” and “others”. Datasets were min-max normalized:

Zi = normalize
(
remove_nominal(Di)

)
(3.3)
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Table 3.3: Studied NTA representations (feature vectors).

A
G

M
Object: Source hosts (unidirectional)
Key: srcIP; Obs.window: 10sec
Features (22 total):
#dstIP
mode_dstIP1

pkts_mode_dstIP
#srcPort
mode_srcPort
pkts_mode_srcPort

#dstPort
mode_dstPort
pkts_mode_dstPort
#protocol
mode_protocol
pkts_mode_protocol

#TTL
mode_TTL
pkts_mode_TTL
#TCPflag
mode_TCPflag1

pkts_mode_TCPflag

#pktLength
mode_pktLength
pkts_mode_pktLength
pkts

T
im

e-
A

ct
iv

ity

Object: Flows (unidirectional)
Key: srcIP, dstIP, protocol; Obs.window/timeout: 60sec
Features (13 total)
srcPort
dstPort
protocol
bytes
pkts

maxton
minton
maxtoff
mintoff
interval

seconds-active
bytes_per_seconds-active
pkts_per_seconds-active

C
A

IA

Object: Flows (bidirectional)
Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec
Features (30 total):
protocol
duration
srcPkts
srcBytes
dstPkts
dstBytes
min_srcPktLength
mean_srcPktLength

max_srcPktLength
stdev_srcPktLength
min_dstPktLength
mean_dstPktLength
max_dstPktLength
stdev_dstPktLength
min_srcPktIAT
mean_srcPktIAT

max_srcPktIAT
stdev_srcPktIAT
min_dstPktIAT
mean_dstPktIAT
max_dstPktIAT
stdev_dstPktIAT
#srcTCPflag:syn
#srcTCPflag:ack

#srcTCPflag:fin
#srcTCPflag:cwr
#dstTCPflag:syn
#dstTCPflag:ack
#dstTCPflag:fin
#dstTCPflag:cwr

C
on

se
ns

us

Object: Flows (bidirectional)
Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec
Features (20 total):
srcBytes
srcPkts
dstBytes
dstPkts
srcPort

dstPort
protocol
duration
max_srcPktLength
mode_srcPktLength

mode_dstPktLength
min_srcPktLength
median_srcPktIAT
variance_srcPktIAT
max_dstPktLength

median_srcPktLength
median_dstPktLength
min_dstPktLength
median_dstPktIAT
variance_dstPktIAT

C
is

co
2

Object: Flows (bidirectional)
Key: srcIP, dstIP, srcPort, dstPort, protocol; Idle/active timeout: 300sec/1800sec
Features (650 total):
srcPort
dstPort
packet length sequence (100 features)
IAT sequence (100 features)
byte distribution (256 features)
public key length

#certificates
#SAN
offered cipherSuites (139 features)
selected cipherSuites (26 features)
offered TLSExtensions (13 features)
accepted TLS extensions (11)

1: Removed from the analysis.
2: The Cisco-Joy tool can extract more features. We removed features that did not contain usable
information in the CIC-IDS-2017 dataset.

3. Stratified sampling Datasets were sampled and a 5% subset was drawn for
hyperparameter search and tuning: Z ′

i = strat_sample0.05(Zi), where i ∈ F . The
sampling process was stratified with respect to the multiclass labels to keep balanced
distributions.
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Table 3.4: Used parameters in the experiments.
Consensus CAIA AGM TA Cisco-Joy

kNN k = 2 k = 2 k = 15 k = 3 k = 15
LOF MinPts = 5 MinPts = 5 MinPts = 18 MinPts = 5 MinPts = 39
HBOS k = 20 k = 22 k = 992 k = 21 k = 20
iForest t = 50, f = 37 t = 95, f = 26 t = 96, f = 2 t = 64, f = 1 t = 73, f = 428

ψ = 860 ψ = 873 ψ = 696 ψ = 529 ψ = 281
SDO k = 553, x = 9 k = 396, x = 5 k = 823, x = 11 k = 926, x = 23 k = 281, x = 11

qv = 0.2 qv = 0.25 qv = 0.2 qv = 0.5 qv = 0.2

4. Hyperparameter search For each vector format i ∈ F and algorithm j ∈ A,
hyperparameter search was conducted by means of evolutionary algorithms1. Obtained
hyperparameters are shown in Table 3.4.

5. Univariate analysis of outlierness ranks We split each Zi dataset into a non-
attack subset Zi,n and an attack subset Zi,a. Later, measures of central tendency and
histograms over Zin and Zi,a were extracted with each algorithm j.

6. Analysis with outlier-ranking metrics For each dataset Zi, the performance of
each algorithm j was evaluated with the metrics defined in Section 2.2.3.

7. Feature selection for maximizing outlierness Finally, CAIA, Consensus and
AGM formats (i.e., the best ones in previous experiments) were joined, vectors were
extracted from PCAPs, and a 5% stratified sample was drawn, obtaining the final Z ′

F

dataset. By means of a forward wrapper with SDO as nested algorithm, features were
gradually selected to find a set that maximizes the separation between attack and non-
attack outlierness. ROC-AUC was selected as optimization criterion. The obtained vector
was named “OptOut” (from Optimized Outlierness), it is shown in Table 3.6. Steps 4, 5
and 6 were repeated for the OptOut vector.

3.3.4 Results and Discussion

We proceed to show results and discuss the questions raised above.

Are Network Attacks Outliers?

Figure 3.9 shows box plots obtained from the univariate analysis of outlierness ranks
step. For the sake of visibility, extreme values (top outliers) have been removed and
outlierness ranks have been normalized. Upper and lower box boundaries correspond to
75th and 25th percentiles respectively, whereas upper and lower whiskers correspond to
95th and 5th percentiles. Additionally, we show some histograms in Figure 3.10 (attack
and non-attack empirical densities are equalized by normalizing histograms). There are
four immediate evidences that stand out from the statistics:

1https://github.com/rsteca/sklearn-deap
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Figure 3.9: Box plots for outlierness ranks.

a) The differences between attack and non-attack instances in terms of outlierness
for the Cisco-Joy are useless for discriminating attacks. Note that box plots and
distributions overlap or non-attacks show higher values.

b) Regardless of the used algorithm, as a general rule attacks show higher outlierness
than non-attack instances when using the CAIA, TA or AGM vectors, being AGM
the format that shows major differences.
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Figure 3.10: Normalized histograms (top 5% outliers removed for a better visualization).
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c) Attack and non-attack outlierness ranges significantly overlap.

d) SDO shows the best performances, followed by HBOS.

The inability of the Cisco-Joy format for discriminating attacks based on outlierness
(a) was expected since this vector uses a considerably high dimensional space with a
majority of binary features, drawing an input space highly unsuitable for methods based
on Euclidean metrics. On the other hand, the preponderance of SDO and HBOS (d),
when considered together with observations (b) and (c), suggests that network attacks
tend to be global, but clustered outliers, and not local outliers. The spaces drawn by
the feature vectors are highly noisy and rich in density variations, and such noise and
multiple densities are mainly generated by legitimate traffic. Network attacks tend to
set small clusters relatively far from the data bulk. Such conditions favor non-local
distance-based methods like HBOS and SDO. In any case, the significant range overlap
(c) makes detection solely based on outlier-ranking algorithms hardly suitable for real
applications, in which high false positive rates would be unacceptable.

What Are the Best Feature Vectors for the Task?

Table 3.5 shows the performance of algorithms for each feature vector with the indices
defined in Section 2.2.3. As for the algorithms, the evaluation measures corroborate the
findings discussed in Section 3.3.4, confirming the prevalence of HBOS and SDO. On the
other hand, noteworthy is the fact that the AGM vector shows high ROC-AUC and low
values for other indices, whereas CAIA and Consensus show low ROC-AUC but higher
values for the other indices when compared with AGM. This fact suggests that, in the
AGM case, most attacks show higher outlierness than most non-attack instances, but
still top outlierness values correspond to legitimate traffic. Contrarily, in the CAIA and
Consensus cases, most attacks and most non-attacks show similar outlierness, but top
outlier positions are considerably taken by attacks (note that attacks in the dataset are
negligible compared to normal instances). Such circumstance favors the use of the AGM
vector to build a general-purpose detector, but CAIA or Consensus as a support detector
for evaluating only extreme outlierness cases. More interestingly, it suggests that vector
formats are complementary and a new feature vector that maximizes attack outlierness
can be built from them.

Can We Improve Vectors and Use Them in Real Detection?

Results in Table 3.5 show that the studied vectors would generate many false positives
in real-world applications. As described in Section 3.3.3, we constructed a feature
vector OptOut that maximizes the separation between attack and non-attack outlierness.
OptOut uses the 5-tuple key, but enriched with features that describe the behavior of the
network device as information source, therefore uses application-based and endpoint-based
behavior at the same time. Table 3.6 shows the included features in the OptOut vector
and Figure 3.11 the forward selection process. We performed hyperparameter search
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Table 3.5: Algorithm performances.

C
on

se
n

su
s

P@n AP@n AP AAP Max. F1 ROC-AUC
HBOS 0.40 0.20 0.26 0.01 0.44 0.42
LOF 0.22 -0.04 0.20 -0.07 0.41 0.47
kNN 0.18 -0.10 0.06 -0.26 0.41 0.47
iForest 0.20 -0.07 0.12 -0.18 0.41 0.40
SDO 0.58 0.44 0.40 0.20 0.72 0.82

C
A

IA

HBOS 0.45 0.27 0.27 0.02 0.47 0.45
LOF 0.21 -0.05 0.18 -0.10 0.41 0.47
kNN 0.18 -0.10 0.06 -0.26 0.41 0.47
iForest 0.31 0.08 0.21 -0.06 0.47 0.56
SDO 0.32 0.09 0.45 0.26 0.52 0.60

A
G

M

HBOS 0.03 0.03 0.04 0.03 0.10 0.92
LOF 0.01 0.01 0.03 0.02 0.02 0.63
kNN 0.13 0.13 0.20 0.20 0.13 0.81
iForest 0.04 0.04 0.05 0.04 0.09 0.91
SDO 0.00 -0.00 0.00 -0.00 0.09 0.95

T
A

HBOS 0.03 0.03 0.04 0.04 0.03 0.53
LOF 0.00 0.00 0.00 -0.00 0.01 0.53
kNN 0.04 0.03 0.05 0.05 0.04 0.58
iForest 0.03 0.03 0.03 0.02 0.04 0.54
SDO 0.04 0.04 0.07 0.07 0.05 0.54

C
is

co

HBOS 0.02 -0.20 0.01 -0.21 0.32 0.26
LOF 0.09 -0.12 0.15 -0.04 0.32 0.28
kNN 0.01 -0.21 0.01 -0.21 0.31 0.12
iForest 0.02 -0.20 0.01 -0.21 0.33 0.27
SDO 0.02 -0.20 0.01 -0.21 0.52 0.65

also for this vector and obtained the following values: kNN, k = 15; LOF, MinPts = 50;
HBOS, k = 22; iForest, t = 50, f = 4, ψ = 456; SDO, k = 241, x = 25, qv = 0.35. Some
histograms are shown in Figure 3.12.

Obtained outlierness box plots are shown in Figure 3.9, histograms in Figure 3.12, and
performance indices in Table 3.7. Results disclose that the OptOut vector considerably
increases performances and, therefore, the capability of algorithms to discriminate attacks
based on outlierness (particularly when using SDO). However, real-world detection
demands high accuracy to minimize the proliferation of false positives. Attack detection
based on unsupervised algorithms can hardly solve the problem alone, but its combination
with supervised methods and techniques that leverage pre-knowledge is expected to build
detection frameworks with highly effective performances.

Table 3.6: OptOut feature vector after forward selection (SDO nested).
Original vector Feature Description
AGM pkts_mode_dstIP Packets received by the most common IP destination.
AGM #TTL Number of different Time-to-Live (TTL) used by the IP source.
CAIA/Consensus srcPkts Packets sent by the IP source.
CAIA stdev_dstPktLength Standard deviation of the length of the packets sent by the IP destination.
CAIA/Consensus srcBytes Bytes sent by the IP source.
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Figure 3.11: OptOut forward selection process.
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Figure 3.12: OptOut vector. Normalized histograms (top 5% outliers removed for a
better visualization).

Table 3.7: Algorithm performances for the OptOut feature vector.
P@n AP@n AP AAP Max. F1 ROC-AUC

HBOS 0.74 0.65 0.93 0.90 0.87 0.96
LOF 0.20 -0.07 0.20 -0.07 0.41 0.46
kNN 0.09 -0.22 0.17 -0.11 0.40 0.43
iForest 0.78 0.70 0.72 0.63 0.79 0.92
SDO 0.90 0.87 0.97 0.96 0.92 0.98
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3. Applying Stream Outlier Detection to Network Data

3.3.5 Discussion

In this section, we have faced three relevant aspects of network attacks, namely: (a) if
they are actually outliers, (b) what are the most suitable algorithms and feature vectors
for implementing outlierness-based detectors, and (c) if the attack outlierness is enough
for implementing real-world detection. We have studied these questions from analytical
perspectives by evaluating five different feature vectors used in the literature with five
different outlier-ranking algorithms. For our experiments, we have used a dataset for
NID evaluation that reflects modern attacks as well as legitimate behavior profiles.

The conducted experiments reveal that, as a general rule, network attacks have higher
global distance-based outlierness averages than normal traffic. Given the characteristics
of network feature spaces – noisy, highly varied, with normal instances covering a broad
spectrum and drawing subspaces with many density differences – local algorithms show
low performances for attack detection. Algorithms with a more global space interpretation
– like SDO or HBOS – tend to perform better, particularly when representation spaces
capture the behavior of network devices and hosts (e.g., the AGM format). We have
proposed a feature vector that maximizes the separation of attacks and non-attacks in
terms of outlierness. However, the risk of high false positive rates still prevails due to
the base-rate fallacy problem inherent to network security spaces. Outlier detection
algorithms can be a powerful tool for detecting known and novel attacks, but leveraging
pre-knowledge with supervised methods should not be omitted, since supervised and
unsupervised methods are complementary and, together, can build highly refined solutions.
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CHAPTER 4
Novel Analysis Methods

Despite a variety of methods that have been proposed in the field of streaming anomaly
detection, the previous chapter has shown that anomaly detection methods that qualify
for being used in network attack detection are hardly available. Explainability is a major
concern for such applications, which narrows the range of deployable methods to distance-
based algorithms. Distance-based algorithms allow a straightforward interpretation of
outlierness based on distances to neighboring samples. On the other hand, due to the large
amount of samples that have to be processed, computational speed must be considered
and computational complexity that is higher than linear is likely to be prohibitive.

Furthermore, a peculiarity of benign network traffic is that it in many cases shows strong
temporal patterns due to the diurnal and weekly rhythm of Internet usage. For successful
attack detection, it would therefore be useful to leverage this information by detecting
anomalous traffic in a spatiotemporal sense that captures periodicities, instead of merely
spotting traffic that is different from any previously seen data. In this chapter, we
therefore devise techniques to cope with the challenges described above.

Finally, however, modern encryption techniques might complicate the task of analyzing
network traffic. If several flows are jointly transmitted over a single encrypted link,
information of individual flows cannot be separately fed into an ML classifier. At the
same time, equipping an IDS with the ability to decrypt is likely to constitute a security
risk by itself. It is therefore a relevant question whether individual flows can be analyzed
in encrypted data purely based on known patterns in traffic data. At the end of this
chapter, we also investigate this question using a deep learning-based approach.

We thus cover important aspects of our postulated research questions in this chapter.
Based on our results concerning RQ1 in the previous Chapter 3, a main goal is the
development of an algorithm that is able to capture the characteristics of NTA. We
therefore address RQ3, since explainability is a main goal of an appropriate algorithm.
Furthermore, however, also the analysis of encrypted traffic prompts for development of
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4. Novel Analysis Methods

new methods for dealing with encrypted data. We therefore also address RQ4 in this
chapter to approach the question whether even encrypted VPN traffic can be analyzed
using ML methods.

4.1 Related Work and State of the Art

We refer to the previous Chapter 3 for a detailed overview of methods for detecting
anomalous points in data streams. Of particular interest are methods that provide
interpretable results, which applies mainly to distance-based methods. In this section, we
will therefore provide additional related work related to the construction of algorithms
we introduce in this chapter. Several fields of research touch the problem settings that
we explore in this chapter, but differ in essential aspects.

4.1.1 SDO

In this thesis, we extend the SDO outlier detection algorithm [127] for outlier detection
on static datasets that is inspired by the kNN method. We have already provided a brief
overview of SDO in Section 3.3.1 and now provide a more detailed description. SDO
builds a low-density model for a dataset by randomly sampling k ∈ N points from it,
which are termed observers. To avoid using outliers as observers, the set of observers is
cleaned based on a quality metric. An outlier score is obtained as the median distance to
the x ∈ N closest observers.

Hence, in a nutshell the SDO algorithm can be summarized as follows:

1. Randomly sample observers from the dataset.

2. For each observer, compute the observer’s observations as the number of points
lying in the observer’s neighborhood.

3. Partition the observers set into idle and active observers based on an observations
threshold.

4. Compute an outlier score as median distance to closest active observers.

The data are thus down-sampled to the observers set, containing only representative
space locations and idle observers are avoided for outlier scoring to clean the model from
points that might be outliers themselves.

In this thesis, we devise SDOstream, an algorithm for performing outlier detection
on data streams that is based on SDO. The intuition of the notion of observers also
holds for SDOstream. However, we will adapt the algorithm for a streaming setting
by continuously sampling new points as observers and using an EWMA operation for
computing observations.
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4.1. Related Work and State of the Art

4.1.2 Time Series Analysis

A time series is a temporal sequence of observations of specific measurement variables.
Time series have been used and analyzed in various fields of research, e.g., finance
and econometrics [147, 111, 160, 197], weather forecasting [192, 160, 197], electric load
forecasting [197] or signal processing [159]. Traditionally, time series have been processed
and analyzed using strict mathematical tools. For an introduction, the reader is referred
to available text books on the topic [111, 67]. However, also data mining and ML is
applied to time series, for example, in forecasting [160, 197], clustering [153], anomaly
detection [151] or change point detection [29].

When processing time series, temporal patterns and dependencies are assumed to exist in
the observed data. In contrast to this assumption, in this thesis we understand data as
being generated by a number of sources that exhibit diverse temporal patterns. Therefore,
data points arrive to the observation location in a mixed up fashion, destroying or hiding
any pattern of individual clusters when analyzing the data as a whole. Hence, instead of
the observed data as a unit, it is the points arriving at a specific location in the feature
space, which we assume to independently or in groups draw time series that can be
analyzed for temporal dependencies.

4.1.3 Coreset Algorithms

The sampling-based approach of our method is related to the concept of coresets, in-
troduced by Agarwal et al. in [17]. Coresets aim to solve a problem on a small set of
representative points instead of solving it on the complete dataset. While authors give
different definitions of what exactly a coreset is [17, 87, 40, 125], a property usually
emphasized is that the solution on the coreset approximates the solution evaluated on
the full dataset up to a defined error.

Coresets have been proposed for approximating geometric extent measures [17], nearest-
neighbor classification [87], k-means clustering [40] and Bayesian inference [125].

4.1.4 Periodic Pattern Mining

The problem of detecting periodicities and temporal patterns in sequences of data has
also been investigated in the context of periodic pattern mining [90, 89]. Here, sequences
with discrete time steps are analyzed to identify recurring patterns in a sequence of events
from a finite set.

Periodic pattern mining can be applied to spatiotemporal data [240] to detect periodicities
in the movement of objects. In contrast to this approach, in this section we focus on
detecting periodicities of arbitrary clusters even if the corresponding data points are
mixed up with data points from other clusters that exhibit different temporal patterns
or no patterns at all. To the best of our knowledge, this problem setting has not been
explored before.
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4.1.5 Analysis of Encrypted Traffic

Finally, we also investigate the analysis of encrypted traffic in this chapter. Analysis
and classification of network traffic is a well-known research area. A substantial body of
research exists on the analysis of encrypted traffic (e.g., [187, 27, 22, 24, 23, 25, 26, 214,
175, 37, 148]). We refer to survey papers [221, 64] on this subject for a comprehensive
overview. While these papers demonstrate that classification of encrypted flows is possible
even when only meta information like packet sizes and IATs are known, it is common
to the majority of existing research to assume that the separation into flows has been
done in advance. This is a reasonable assumption when encryption is done only on the
transport layer, but is unable to handle more comprehensive encryption techniques we
target in this thesis.

Some research has been conducted on deanonymization of VPN traffic. Appelbaum
et al. [35] outline several strategies an attacker might use to deanonymize a victim’s VPN
traffic, distinguishing attackers based on their position and on their capabilities. Unlike
targeting the patterns of the encrypted traffic itself, the paper reveals several scenarios for
how an attacker can make use of leaking information. Similarly, Bui et al. [60] highlight
shortcomings in the client configuration of commercial VPN providers that might allow
attacking the VPN’s encryption.

Of particular interest to the research community are deanonymization attacks on the Tor
network [195, 21, 139, 43], since Tor aims to achieve the very purpose of providing strong
anonymity. The papers [139, 43] provide a recent overview of approaches to deanonymize
Tor traffic. Besides attacks that are based on leaking information through side channels
and active attacks and attacks that are based on actively exploiting shortcomings of
client applications, also several passive attacks on Tor have been proposed. However,
these passive attacks are usually based on associating the exit nodes’ connections with
the users’ connections by leveraging attacker-controlled Tor nodes. This scenario is very
different from the setting we consider here.

Unlike previous research, we base our analysis on observed encrypted traffic directly,
even if it consists of packets from multiple interleaved flows. A related research effort
has been conducted by Meghdouri et al. [167], who showed that by using a deep NN, it
is possible to accurately identify the number of flows contained in an encrypted VPN
tunnel, hence disclosing information about the encrypted traffic. In this thesis, we go
one step further and focus on the problem of separating packets in encrypted tunnel
traffic into their respective flows. To the best of our knowledge, this problem has not
been investigated before.

4.2 SDOstream
Notice of adoption from previous publications (Section 4.2)
Parts of the contents of this section have been published in the following papers:
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[117] Alexander Hartl, Félix Iglesias, and Tanja Zseby. SDOstream: Low-
density models for streaming outlier detection. In ESANN 2020 proceed-
ings, pages 661–666, 2020

Academic work has been predominantly carried out by myself. All authors contributed
in discussion of experiments and in proofreading of the manuscript.

We first turn to the problem of designing an outlier detector for streaming data that is
well suited for the characteristics of network data, thus addressing RQ3 and building upon
our findings from the previous chapter answering RQ1. In stream data processing, data
points vj ∈ RD arrive continuously at monotonically increasing, but otherwise arbitrary
times tj ∈ R for j = 1, 2, . . .. Due to the steady arrival of new data, knowledge discovery
and data mining tasks pose various challenges in this setting, as in many fields of research
and engineering data accumulates to a substantial volume within short time. In NTA, but
also frequently in other applications, algorithms for anomaly detection on data streams
are required to operate in an online fashion, allowing to perform classifications whenever
new points arrive, which makes expensive retraining procedures impossible. At the same
time, however, concept drift demands to continuously adapt the model to newly seen
patterns and forget old, outdated ones.

Some alternatives to implement adaptiveness are re-fitting or updating models. However,
anomaly (or outlier) detection is traditionally faced using instance-based methods like
kNN or LOF [58]. As general purpose options, such methods have not been overcome
yet in terms of accuracy [63]. On the other hand, their main drawback is the need to
consider all previous data for every new data point, a fact that significantly slows down
the analysis. For streaming data, this problem is partially alleviated by using a SW,
which can be considered a memory length. Moreover, outlierness is strictly defined based
on non-intuitive parameters, many times being arbitrarily adjusted.

We introduce SDOstream, a simple and elegant outlier detection algorithm for evolving
data streams, which operates in O(n) in the number of processed data points. SDOstream
builds a model for the data and, hence, avoids the need to store all points in a SW.
SWs define a cut-off time, before which data points are not remembered. In SDOstream,
impact of past data points is of exponential shape. Hence, it has the potential to
retain shapes for a much longer time period. Therefore, whereas in SWs memory length
frequently has to be decided based on algorithm limitations, in SDOstream it is defined
only based on the application.

Furthermore, in SDOstream the final definition of outlierness is established based on space
distances and representative point locations, providing an intuitive and interpretable
decision process.

Compared to the above methods for streaming data, SDOstream benefits from operating
with a model, but avoid drawbacks emerging from expensive model refitting procedures.
It is not limited by a SW, so it avoids suffering from short-sightedness (Figure 4.1). It
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Figure 4.1: Short-sightedness of SWs: p is an outlier for the SW, but an inlier for
SDOstream.

operates in linear time like RFs, but by keeping space locations in the model, its definition
of outlierness preserves data shapes instead of solely the trained model.

4.2.1 Notation

In this chapter, we denote by [Nbins] with Nbins ∈ N the set {0, . . . , Nbins − 1} and
by d : RD × RD → R+

0 a distance function like, e.g., the Euclidean distance. To ease
comprehension, we present an overview of most important symbols and notation used
throughout Sections 4.2 and 4.3 in Table 4.1. We refer to later sections for explanation
of terms used in Table 4.1.

4.2.2 Algorithm Design

The SDO algorithm can be adapted for streaming operation in a very natural way.
We can adopt the usage of a fixed-size set of data points as observers, representing a
model, consider a fixed-size fraction of observers as idle and compute an outlierness
score as median of distances to the x closest active observers. Streaming operation
requires permanent adjustment of the model to new data. Hence, we introduce additional
techniques to update observer quality metrics and observers themselves as new data
arrives.

Parameters

The most important parameter of SDOstream is f ∈ (0, 1), the fading parameter. f
controls how quickly the model is able to adjust to newly observed data clusters and,
on the other hand, how stable the model is with respect to noise in the processed data.
It is beneficial to write f as f = exp(−T−1) with a time parameter T ∈ R+, which in
its function can be best understood as similar to the window size of SW approaches.
Furthermore, k ∈ N denotes the model size, i.e. the number of observers to use in
stationary operation. Intuitively, k should be increased for highly diverse data. Finally,
qid ∈ (0, 1) denotes the fraction of observers to ignore for outlier scoring (called idle
observers) and x ∈ N is the number of nearest observers to consider. The reader is
referred to [127] for a discussion of how to choose these parameters.
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4.2. SDOstream

Table 4.1: Symbols and notation.
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k ∈ N Number of observers.
x ∈ N Number of nearest observers.
f ∈ (0, 1) Fading parameter.
T = −1/ ln f EWMA time constant.
T0 ∈ R+ Fourier Transform (FT) base period.‡

Nbins ∈ N Number of frequency bins.‡
qid ∈ [0, 1] Observer idle-active fraction.

A
lg

or
ith

m
St

at
e

Ω Observers set.
Pω ∈ R+ Observations by ω.†

Pω,n ∈ C Fourier coefficients for ω’s observations.‡
Hω ∈ R+ Reference for age-normalization of Pω,0.
Pω = Pω/(1− fHω ) Average observations by ω.

iLAO ∈ N Index of last added observer.

Fu
rt

he
r

N
ot

at
io

n ω ∈ Ω An observer.
d (·, ·) A distance function.
N ⊂ Ω Set of nearest observers.
Na ⊂ Ω Set of nearest active observers.
n ∈ [Nbins] The frequency index.‡

† Only applies to the plain SDOstream algorithm outlined in Section 4.2.
‡ Only applies to SDOstream’s extension for periodic patterns outlined

in Section 4.3.

Observer Idle-Active Split

In SDO, observations Pω ∈ N for an observer ω, i.e. the number of data points for which
ω is contained in the nearest-observers set, constitutes a quality metric, which is used as
basis for determining the set of active observers. To adjust Pω to newly seen data, while
being able to scale to arbitrary time scales, we deploy an exponential moving averaging
approach. In particular, we keep track of an exponential moving average Pω ∈ R+ of
observations by ω. Hence, for each processed data point, we set Pω ← fPω + 1 if it
belongs to the nearest-observers set of the current data point, and Pω ← fPω if it does
not. We use Pω to distinguish between active and idle observers, i.e., the qid-fraction of
observers with the lowest Pω values are declared idle.

Replacing Observers

To retain an up-to-date model, it is necessary to regularly replace outdated observers
by new data points. It appears reasonable to select observers for removal based on the
minimization of a quality metric like Pω. However, new observers have a lower Pω than
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4. Novel Analysis Methods

established observers. While this is intended for the idle-active split, selecting observers
for removal based on Pω is ill-fated, as it would lead to new observers being replaced
constantly. Instead, an average observer quality Pω ∈ R+ is required, which sets Pω in
relation to the maximum value it can assume. Assume that data points arrive with a
constant IAT of δ ∈ R+. Then, after a time H ∈ R+, i.e. after ⌊Hδ ⌋ data points, the

maximum Pω can have assumed is 1 + f δ + . . . + f ⌊ H
δ

⌋δ = 1−f (⌊ H
δ

⌋+1)δ

1−fδ ≈ 1−fH

1−fδ . Hence,
Pω/

1−fH

1−fδ can be used as a metric for selecting the observer to replace. Since we are only
interested in comparing observers, the constant factor 1− δ can be omitted, obtaining
Pω = Pω/(1− fH). Clearly, real-world IATs are not constant. However, it can be shown
that the provided Pω remains valid also for non-constant IATs, given that the average
IAT does not change at a time scale of model adjustment time.

Putting the Blocks Together

Algorithm 4.1 depicts SDOstream. Inputs consist of a data point vi ∈ Rm and the
corresponding time stamp ti ∈ R. In line 1, the x closest observers are determined from
both sets of active and idle observers. Hence, the set of observers Ω is queried together
with Pω to determine the current idle-active split and find the sets N and Na, containing
the x closest observers and x closest active observers, respectively.

In lines 2-3 observer quality Pω and ageHω of all observers are adjusted and, subsequently,
the model itself. For this purpose, in line 4, the probability of sampling a data point
to be used as observer, is proportional to

∑
ω∈N Pω∑
ω∈Ω Pω

to support an even Pω and, hence, a
representative model. Furthermore, note that during initial start-up using all available
data points as observers might lead to a very poor model due to temporal dependence in
the data stream, e.g. if the k first seen data points all belong to the same cluster. Hence,
also during start-up, observers are added with a finite rate, which is gradually decreased
to quickly approach the desired model size on the one hand, and sample over a large

Algorithm 4.1: SDOstream: Processing a data point (vi, ti).
1: Find x closest observer sets N and Na
2: Set Hω ← Hω + (ti − ti−1) and Pω ← f ti−ti−1Pω ∀ω ∈ Ω
3: Set Pω ← Pω + 1 ∀ω ∈ N
4: if Ω empty or r ≤ − ln(f)k2

x

∑
ω∈N Pω∑
ω∈Ω Pω

ti−tiLAO
i−iLAO

with r ∈R [0, 1] then
5: if |Ω| = k then
6: Remove arg minω∈Ω Pω from Ω
7: end if
8: Add vi to Ω
9: Set iLAO ← i, Pvi ← 1 and Hvi ← 0

10: end if
11: return medianω∈Na(∥ω − vi∥) as outlier score
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4.2. SDOstream

enough period on the other hand. In stationary operation data points are then sampled
with a rate of k/T = −k ln f , i.e. within a time T = −1/ ln f all observers are replaced
one time on average.

Finally, in line 11, outlier scoring takes place and, similar to SDO, is performed by
computing the median distance to the x closest active observers.

4.2.3 Time and Space Complexity

If n denotes the number of processed samples, we show that SDOstream has space and
time complexity O(k) and O(n log k), respectively. Indeed, considering solely dependence
on n, space and time complexity are O(1) and O(n), as SDOstream operates with a
fixed-size model. This benefit allows scaling to data streams of arbitrary size.

Furthermore, Algorithm 4.1 suggests O(nk) run time when considering also model size k.
However, Algorithm 4.1 mainly aims at simplicity of presentation and for highly dynamic,
diverse streams, sub-linear run time with respect to k might be desired.

To obtain run time in O(n log k), observers can be stored in a data structure for efficient
nearest neighbor search like an M-Tree [70], for which the authors observed logarithmic
dependence of tree size. Tree-based structures can be used for keeping observers ordered
with respect to Pω. Hence, both nearest observer search and idle-active split are possible
in O(log k). Discovery of the observer with lowest Pω takes O(k) and is required every
T
kδ th sample on average. Hence, SDOstream takes O(n log k + kδ

T nk) amortized time. In
the primary case of high-rate settings, i.e., δ/T → 0, total space and time complexity
thus are O(k) and O(n log k), respectively.

4.2.4 Performance Evaluation

We used real and artificial data to study SDOstream, using L2 distance and deploying
genetic algorithms for tuning hyperparameters for all studied algorithms. To investigate
the temporal behavior for transient events like suddenly emerging clusters, we crafted a
synthetic dataset with 100,000 data points, 6 clusters and 2% outliers using MDCGen [128].
We removed data points for two clusters, so that the clusters appear after the 50,000th
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Figure 4.2: Performances for the KDDCup’99 dataset (left) and behavior for emerging
new clusters at t = 50, 000 with synthetic data (right).
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Table 4.2: ROC-AUC scores for static datasets.

SDOstream SW-KNN xStream SDO kNN LOF iForest

Annthyroid 0.627 0.594 0.522 0.610 0.644 0.674 0.807
Cardiotocogr. 0.815 0.808 0.810 0.818 0.784 0.810 0.804
PageBlocks 0.904 0.903 0.923 0.910 0.904 0.943 0.921

data point. On the right side, Figure 4.2 shows the ensemble ROC-AUC and the
average sampling rate computed over 10,000 runs of SDOstream with T = 10, 000 and
appropriately randomly permuted datasets.

As shown, the clusters are first classified as outliers, but after 1,000 (= T
10) to 2,000

(= 2T
10 ) data points, performance steeply increases, returning to stationary performance

after about 4,000 (4T
10 ) data points. As a side effect of the factor

∑
ω∈N Pω∑
ω∈Ω Pω

, the sampling
rate is affected by the event to a very small extent.

On the left side of Figure 4.2 we provide a comparison of performance results for the
KDDCup’99 dataset, which contains 4.9 million data samples of streaming data. The
window size is used as time parameter for xStream and SW-KNN, and T is used for
SDOstream. To evade influence of the convergence phase, we only used the second half of
returned outlierness scores for computing the ROC-AUC for both hyperparameter search
and performance evaluation. As depicted, SDOstream exhibits very good performance
in streaming scenarios, retains low processing time and shows to be stable over a wide
range of different T .

Since only few datasets are established containing streaming data, and to provide a
better comparison with popular algorithms, Table 4.2 compares SDOstream also against
non-streaming algorithms using static datasets from [63], again evaluating stationary
performance by considering the second half of returned scores. Here, SDOstream shows
performances comparable to established outlier detection methods.

Concluding, SDOstream proved to be a fast, versatile outlier detection algorithm, demon-
strating its strengths particularly when facing substantial data volumes by creating a
representative model of the data. While providing an intuitive outlierness definition, it is
flexible and allows memory length to be set solely based on the application’s requirements.

4.3 Mining Periodic Patterns

To date, research has yielded diverse approaches for anomaly detection on data streams,
showing different qualities in coping with these challenges. However, disregarded by
existing approaches, also the dynamics of the arrival process of data points themselves
yield information that can be crucial for the success of a data-mining task. For instance,
the appearance of certain clusters might be caused by a diurnal pattern while others
occur at all times. Leveraging these temporal patterns is relevant for anomaly detection,
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as it allows to spot out-of-phase outliers, i.e. data points that do not fit established
temporal patterns. In addition, capturing and analyzing such temporal patterns found is
also interesting for descriptive and knowledge extraction purposes.

In this section, we present an extension of our algorithm presented in the previous
Section 4.2 for building and dynamically maintaining a fixed-size model from a stream of
arriving data points. The generated model incorporates information about the time when
points have been observed and, hence, the algorithm is able to capture periodical patterns
in the data stream, while retaining constant per-sample space and time complexity. To
fully escape dependence of the data volume, we continue to use an EWMA to estimate
model information from the arriving data mass. Based on the theory of FTs, however,
we now hold temporal information as coefficients of the functions exp(jk2πt/T0) with
k ∈ N0 and a base period T0, which yield an orthogonal basis on any interval of length
T0. A view of the model representative for a specific time of interest t is finally formed by
filtering the set of observers to contain only the most relevant ones for time t, inherently
ignoring outliers, which would otherwise distort the learned model.

Our algorithm is a natural extension of SDOstream, adding temporal information to the
model by lifting the EWMA operation to the complex plane. Having a model of what
is normal allows us to state what does not conform to this model, inherently linking
the task of anomaly and outlier detection to our method, but additionally considering
temporal periodicities in the model of normality. From a data mining perspective, we
consider the possibility of analyzing the steadily arriving data stream for spatial and
temporal patterns as an equally important contribution as providing outlier detection for
stream data. We provide experimental results for both of these use cases.

In this chapter, we show relevant contributions for algorithmic outlier detection from
several practical perspectives:

• Scalability. In a streaming setting, many applications process a vast amount of data
points during a short period of time while, at the same time, requiring a memory
length of weeks or even months to capture an accurate notion of normality. For
many established outlier detection methods, space or time complexity increases
substantially with memory length, which might become unfeasible or enforce the
use of suboptimal parameters that downgrade the detection performance.

With our work in this thesis, we target specifically data streams with high rates of
arriving data points, e.g., several thousand per second. In particular, we assume
the number of arriving data points within the configured memory length to exceed
the configured model size. Since our method works with a fixed-size model, space
and time complexity per data point do not depend on memory length. Furthermore,
if a parameterization with a comprehensive model or a high temporal resolution is
desired, our algorithm can use SIMD parallelism, which recently showed drastic
improvements [215] due to the popularity of deep learning.
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• Interpretability. Many modern outlier detection approaches use tree structures or
random projections of feature spaces, which habitually improve detection at the
cost of sacrificing model interpretability. This entails difficulties in understanding
and explaining why the outlierness of a certain data point has been ranked as it
has been. Interpretability of ML is key to extract knowledge, formulate hypothesis,
and establish trust in many application fields, e.g., medicine [228, 150], judicial
decisions [150] or NID [116].
In our case, outlier scores are directly interpretable as deviations from closest
observers. The analysis of the observers set is straightforward, as the number of
observers is small, and is possible at any time, both online and in a forensic manner.
Here, our proposed algorithm also provides temporal information of observers’
recurrence. In many cases, features are abstract and structures in high-dimensional
feature spaces are difficult to grasp. Hence, by adding temporal information to the
model, our proposed method adds substantial value to interpretability.

• Accuracy. Capturing the temporal occurrence of clusters provides our method with
accuracy benefits for outlier detection as it enables the detection of out-of-phase
outliers, which would go undetected by traditional outlier detection methods. We
show that our algorithm is able to keep up with or outperform state-of-the-art
performance on publicly available datasets for outlier detection evaluation.

The remainder of this section is structured as follows. After summarizing the goals of our
new approach, we introduce the concept of out-of-phase outliers. We will then describe
our method and validate our proposal twofold: from a proof of concept perspective,
by showing that out-of-phase outliers can be reliably detected, and with performance
evaluations on real-world data and publicly available benchmarking datasets for outlier
detection, in which our algorithm achieves or surpasses state-of-the-art results, and
additionally provides a useful characterization of the streaming data.

4.3.1 Preliminaries

Observers-based Outlier Detection: Notation and Recap

Similar to the previous Section 4.2, we denote the observers set as Ω and, accepting a
slight abuse of notation, we denote by ω ∈ Ω both an abstract observer and its feature
vector. Furthermore, Pω denotes ω’s observations, where Pω ∈ N0 for SDO and Pω ∈ R+

0
for SDOstream. Hence, Pω counts the number of data points for which ω belongs to the
x nearest observers with an algorithm parameter x ∈ N. Observers with insufficient Pω

are thus disregarded for outlier scoring.

Core Novelty. Our extended algorithm replaces the scalar number of observations
Pω with a temporal function, allowing active observers to become idle and reappear
dynamically in accordance with the temporal pattern of the underlying clusters. Therefore,
at any time it is possible to construct an active observers set representative for the data
stream at the current time, opening up various use cases for further processing. By
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basing outlier detection on the active observers set, it is possible to detect data points
that do not meet the established temporal pattern, constituting outliers that might go
undetected with traditional outlier detection approaches.
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Figure 4.3: Illustration of out-of-phase outliers. While A is a spatial outlier, B is a
out-of-phase outlier.

Out-of-Phase Outliers

Besides the usual spatial outlier, which indicates a data point that deviates from previously
seen points in a purely spatial sense, traditional stream outlier detection algorithms are
able to detect temporal outliers in terms of concept drift. Hence, after a pre-fixed time
period, observed shapes are forgotten and points that would have been considered inliers
are detected as temporal outliers.

However, control processes and human-related activities involve regularly repeating
activities, habits and events, governed by, e.g., a diurnal or weekly rhythm. As a
consequence, when analyzing clusters in data resulting from this behavior, we can identify
times when appearances are likely and times when they are less likely. Hence, besides the
usual spatial and temporal outliers, in this thesis, we acknowledge out-of-phase outliers
and propose a method able to detect them. Figure 4.3 illustrates this distinction. While
the spatial outlier A deviates from all previous points, the out-of-phase outlier B would
be considered as inlier if it occurred within the cluster period.

Figure 4.3 also illustrates the functioning of our method in a nutshell. In the example, data
points draw three clusters that occur with different dynamics. The algorithm captures the
three clusters in the model with three observers that, based on previously seen data, are
expected to be located in the neighborhood of newly arriving data. Observers also keep
temporal information about cluster appearance by learning from when points are seen
in an observer’s neighborhood. They keep such information in frequency space, which
yields the benefits of (1) being in line with the EWMA operation and (2) automatically
performing a temporal interpolation, which would otherwise be necessary as data points
can arrive at arbitrary real-valued times.

4.3.2 Our Method

We now describe the construction of our proposed method. To this end, we denote by
[Nbins] with Nbins ∈ N the set {0, . . . , Nbins − 1} and by d : RD × RD → R+ a distance
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function like, e.g., the Euclidean distance. To ease comprehension, we present an overview
of most important symbols and notation used throughout this chapter in Table 4.1.

In contrast to previous work, our method enables the model to absorb information about
temporal patterns in processed data streams. To describe this use case, we consider data
streams satisfying the following definition.

Definition 1. For a given data stream, let γ(v, t) denote the expected rate of arriving data
points at location v ∈ RD and time t ∈ R, i.e. γ(v, t)∆v∆t denotes the expected number
of data points seen in a volume ∆v and duration ∆t. We say that the stream exhibits
T0-periodic patterns with T0 ∈ R+ if γ(v, t) is T0-periodic, i.e., γ(v, t) = γ(v, t+ T0) for
all v ∈ RD, t ∈ R.

It is important to note that we base Definition 1 on the expected rate of arriving data
points. In many practical scenarios involving real-valued streams, data points that have
been seen in the past never reoccur with the exact same feature vector, but only points
in the points’ vicinity can be reobserved. Hence, we model the stream as being generated
by an underlying deterministic process to be able to reason about periodic behavior at a
certain location.

Note, in particular, that a stationary stream exhibits T0-periodic patterns for any T0.
Furthermore, while we describe the method based on Definition 1, the definition does not
include concept drift, which is additionally tackled by the method in terms of EWMA.

To capture temporal patterns, we allow observers’ observations to be T0-periodic. We
represent and store the associated temporal functions in terms of their FT coefficients
Pω,n ∈ C with ω ∈ Ω, n ∈ [Nbins]. To extract information relevant for the current point
in time from the model, we define the qid-percentile Pthr ∈ R+ of the observers’ average
observations,

Pthr = max
{
ρ ∈ R

∣∣∣ ∣∣{ω ∈ Ω |Pω,0 < ρ}
∣∣ ≤ qid|Ω|

}
, (4.1)

and construct a view yielding the currently most relevant, i.e., active observers

Ωa =
{

ω ∈ Ω
∣∣∣ℜ{∑ n∈[Nbins]Pω,n

}
≥ Pthr

}
(4.2)

in terms of a lower-bound for the inverse FT of observers.

To narrow the scope to the most relevant information in a spatiotemporal sense, for a point
v ∈ RD we then specify the set of nearest observers N (v) ⊂ Ω with |N | = min(x, |Ω|)
and the set of nearest active observers Na(v) ⊂ Ωa with |Na| = min(x, |Ωa|), so that

d(ω̃,v) ≤ d(ω,v) ∀ ω̃ ∈ N (v),ω ∈ Ω \ N (v) and (4.3)
d(ω̃,v) ≤ d(ω,v) ∀ ω̃ ∈ Na(v),ω ∈ Ωa \ Na(v). (4.4)

Algorithm 4.2 depicts our core algorithm. We will discuss details on algorithm construction
in the following sections.
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Algorithm Construction

From a functional perspective, Algorithm 4.2 can be divided into the three parts, which
are concerned with establishing the set of active observers Ωa (line 1), using it for
outlierness scoring (line 2), and updating the model (lines 3-10). The core concept,
which allows capturing periodical patterns, is based on Lemma 1.

Lemma 1. For an observer ω ∈ Ω, let g(t) ∈ R+ denote the expected rate of arriving
data points, for which ω is contained in N at time t. If g(t) is a T0-periodic function and
T ≫ T0, observations Pω,n approximate a FT E{Pω,n} ≈

∫ 0
−T0

g(τ−t) exp(−j2πnτ/T0)dτ
up to a constant factor.

Proof. Let io ∈ N denote the index of a data point, for which ω is contained in N and ic
the index of the currently processed data point, i.e. io < ic. Then, the contribution of io
to Pω,n according to line 4 of Algorithm 4.2 has been multiplied by Πic

i=io+1
(

exp(−T−1 +
jn2π/T0)

)ti−ti−1 =
(

exp(−T−1 + jn2π/T0)
)tic −tio . Summing over all points that have

arrived in ω’s neighborhood, we can write

E{Pω,n} =
∫ t

−∞
g(τ)

(
exp(−T−1 + jn2π/T0)

)t−τ
dτ.

Splitting the integral into intervals of length T0, we obtain

E{Pω,n} =
∞∑
l=0

∫ t

t-T0
g(τ -lT0)

(
exp(-T -1 + jn2π/T0)

)t-τ -lT0dτ =

( ∞∑
l=0

exp(-T -1lT0)
) ∫ t

t-T0
g(τ)

(
exp(-T -1 + jn2π/T0)

)t-τ
dτ

Algorithm 4.2: Processing a data point (vi, ti) for outlier detection and tem-
poral pattern discovery.

1: Find x closest observer sets N (vi) and Na(vi)
2: report medianω∈Nad(ω,vi) as outlier score
3: Set Hω ← Hω exp(− ti−ti−1

T ) + 1 ∀ω ∈ Ω
4: Set Pω,n ← Pω,n

[
exp(- 1

T + jn2π
T0

)
]ti-ti-1 ∀ω ∈ Ω, n ∈ [Nbins]

5: Set Pω,n ← Pω,n + 1∀ω ∈ N , n ∈ [Nbins]
6: if |Ω| = 0 or r ≤ k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti-tiLAO
i-iLAO

with r ∈R [0, 1] then

7: Remove arg minω∈Ω
Pω,0
Hω

from Ω if |Ω| = k
8: Add vi to Ω
9: Set iLAO ← i, Hvi ← 1 and Pvi,n ← 1∀n ∈ [Nbins]

10: end if
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due to T0-periodicity of g(t) and exp(jn2π) = 1. Abbreviating the constant factor and
substituting τ ′ = τ − t, we obtain

E{Pω,n} =c
∫ 0

−T0
g(τ ′ − t)(exp(−T−1 + jn2π/T0))−τ ′

dτ ′ T≫T0≈

c

∫ 0

−T0
g(τ ′ − t) exp(−jn2πτ ′/T0))dτ ′. □

Lemma 1 shows that temporal information about how frequently observers are used can
be extracted from Pω,n in terms of an inverse FT. To obtain a set of active observers Ωa

representative for the current point in time, it is natural to select observers that in the
past have been used most often at corresponding points in time. Here, due to algorithm
functioning observer usage is mainly considered at time t− T0, which is reasonable due
to T0-periodicity. However, due to inherent interpolation also the very recent observer
usage is considered, which is interesting particularly for new observers. In Theorem 1,
we show that our method applies this approach for constructing Ωa.

Theorem 1. At time t, for data streams exhibiting T0-periodic patterns, the active
observers set Ωa, as used by Algorithm 4.2, contains observers with highest g(t).

Proof. Equation 4.2 constructs the set Ωa by selecting observers from Ω, for which
ℜ{
∑
n∈[Nbins] Pω,n} is highest. If Pω,n yields the FT of g(t) according to Lemma 1, the

theorem follows immediately, since ℜ{
∑
n∈[Nbins] Pω,n} performs the inverse FT at time

t = 0 relative to the current time. □

Theorem 1 allows us to make use of Ωa for assessing spatiotemporal outlierness of arriving
data points. Our method follows a nearest-observer approach for computing outlier scores.
Hence, in line 1, N and Na are constructed. We compute an outlier score based on the
median of distances to the x closest observers.

Instead of using the median, the mean of distances to the closest observers might
alternatively be used as reduction function. For our work, we base the decision to choose
the median on the experiments performed in [128]. Superior results when using the
median can be explained by increased robustness.

The final part of Algorithm 4.2 is concerned with updating the model to newly observed
data, which involves replacing the least useful observer with a new data point. Updating
of Pω,n in line 4 follows an exponential shape parameterized by time T . We show in
Theorem 2 that replacing of observers proceeds with the same pace, which is necessary
as observers otherwise would not be able to build up meaningful Pω,n values.

Theorem 2. For data streams exhibiting T0-periodic patterns, Algorithm 4.2 on average
samples k data points during a time period T as new observers.
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Proof. Taking line 6 in Algorithm 4.2 as starting point, we have min
(

1, k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

)
as probability for sampling a given newly seen point as observer. Since we target specif-
ically data streams with high rates of arriving data points, we can safely assume the
probability of sampling a point to be small. Hence, Pr

{
1 < k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

}
is

negligible and we can write for the average probability of sampling a new point as
observer Ps ≈ E

{
k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

}
. Under the same assumption, we observe

that the term ti−tiLAO
i−iLAO

depends on the current time, but, since points belonging to
different neighborhoods arrive in an interleaved manner, does not depend on a point’s
neighborhood. Since

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

does not depend on time, we can split the term to

Ps ≈ E

{
k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

}
E
{
ti−tiLAO
i−iLAO

}
due to stochastic independence of both terms.∑

ω∈N Pω,0/x expresses the average observation count in the current neighborhood. The
algorithm implements several mechanisms to make the observer density agree with
the time-averaged point density, rendering the time-averaged local average observation
count E {

∑
ω∈N Pω,0/x} equal to the total average observation count of all observers∑

ω∈Ω Pω,0/k, hence Ps ≈ k
TE

{
ti−tiLAO
i−iLAO

}
= k

T IAT with the average IAT of two data
points IAT. During a time period of T , T/IAT data points arrive, yielding an average
number of sampled points of PsT/IAT = k. □

Note that the factor
∑

ω∈N Pω,0/x∑
ω∈Ω Pω,0/k

might be omitted without invalidating Theorem 2.
However, we include it to promote representativity of the observers set. Hence, underrep-
resented observers in a neighborhood cause the observation count in this neighborhood
to increase, leading to a higher sampling probability, while overrepresented observers
lead to a lower sampling probability in the same neighborhood.

Furthermore, in the transient starting phase,
∑

ω∈N Pω,0/x∑
ω∈Ω Pω,0/k

is larger compared to during
usual operation because the observers set has not reached its full size yet. Hence, by
incorporating such factor we make sampling higher during this transient phase, allowing
the model to quickly reach its full size. On the other hand, selecting all observers from
a very short timespan would be unlikely to result in a model that is representative for
longer periods. Hence, the reciprocal dependency of sampling probability of model size
yields a good tradeoff between quickly assuming the full model size and building the full
model from a too short time span.

During time T the model is replaced one time on average according to Theorem 2. Since
we use a fixed-size model, an observer has to be removed when adding a new one. Picking
the removal candidate only based on its Pω,n would give rise to new observers being
constantly replaced, since new observers naturally show lower Pω,n than older ones.
Hence, we use an age-normalized observation count Pω,0

Hω
for selecting the observer to

remove in line 7. By updating Hω as depicted in line 3, Hω denotes the maximum
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Pω,0 an observer ω can have assumed since it was added to the observers set. Thus,
Pω,0
Hω
∈ [0, 1], where the maximum value of 1 is assumed only if ω has always been in N

since it was added to the model.

Analyzing the Learned Model

When analyzing a data stream, we are interested in finding out at which points in time
data points are seen in the data stream. Since in many practical scenarios behavior
is different at different times with a certain, e.g., diurnal rhythm, this analysis has to
include data points from a large enough period to capture behavior at different times
accurately. In a high-rate setting, manual analysis for such behavior is highly difficult,
since it might become difficult to even store enough data for later analysis to arrive at
correct conclusions. Additionally, manual analysis in a practical real-valued feature space
raises the question how to analyze for temporal behavior, since a point with a given
feature vector need not ever reoccur even if the stream’s behavior is periodic. Instead, the
point density at a certain location should be considered for extracting temporal behavior.

At any point in time, the observers set Ω allows immediate access to a sampled set of
observed data points, including also temporal information. The temporal shape g(t) of
observed data points in a neighborhood of a given observer ω can be efficiently recovered
in terms of an inverse FT,

g(t) = ℜ
{∑

n∈[Nbins]Pω,n exp(jtn2π/T0)
}
. (4.5)

We understand the method as a part in a data processing pipeline. While Ω in many cases
is small enough to be inspected manually, it can be subjected to, e.g., visualization or
clustering techniques to extract further knowledge. In this regard, it is equally important
to be able to analyze the entirety of observers, but also to analyze stream characteristics
relevant only for the current point in time, which the active observers set Ωa provides.
Ωa is used for scoring outlierness of arriving data points. Hence, by analyzing points in
Ωa the data analyst is able to come up with an interpretable explanation why a given
outlying point has been marked as such.

Main Concepts and Properties

Algorithm 4.2 shows strong similarities to its predecessor SDOstream. In fact, our
proposed method can be considered an extension of SDOstream. In contrast, crucial
properties that have been newly adopted are the ability of handling concept drift and
the limited space and time complexity. If the concept of a data stream drifts, previously
learned data shapes have to be forgotten and new data shapes have to be learned to retain
an accurate model of normality. If data points no longer arrive in the neighborhood of
an observer, its Pω,n fades with an exponential shape and the observer will eventually be
removed according to line 7 of Algorithm 4.2. New data points are continuously added
to the model and will remain in the model if they accumulate sufficient observations.
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This approach is efficient with respect to space and time complexity. Processing time in
Algorithm 4.2 is needed mainly for comparing arriving data points against the learned
model. This requires constructing Ωa according to 4.2, which, assuming that distance
computation is O(D) with the number of dimensions D, gives time complexity O(kNbins)+
O(kD). Holding the model in memory requires storing the observers ω and storing their
observations Pω,n, similarly resulting O(kNbins) + O(kD) as space complexity. Thus,
per-point space and time complexity linearly depend on model size k, which is a pre-fixed
parameter. From a practical perspective, it is mandatory for many applications that
space and time complexity depend neither on the total number of processed samples, nor
on the memory length T . This suits big data scenarios with highly demanding processing
rates.

Considering algorithm construction, the major novelty of this section is lifting observations
to the complex plane. Hence, instead of a single real-valued Pω, we now maintain several
complex-valued Pω,n for the observation count. This extension allows temporal periodic
patterns to be incorporated in the model, which not only adds substantial value to our
method capability of detecting outliers, but also provides additional information in the
model that paves the way for entirely new application areas.

Parameter Choice

In this section, we provide guidelines to adjust parameters properly.

Temporal Parameters Algorithm parameters directly related to temporal behavior
are T , T0 and the number of frequency bins Nbins. T is the time constant of the exponential
windowing mechanism. It governs memory length, and its function is comparable to the
window length of SW algorithms.

T0 denotes the period corresponding to the FT base frequency. Periodicities can be
captured best if T0 is an integer multiple of expected periodicities. For many real-world
applications, it is reasonable to choose a T0-value of one week, so that weekly and diurnal
patterns can be naturally detected. Furthermore, to ensure that the EWMA operation
approximates a Fourier integral, T0 should be chosen reasonably smaller than T .

The bin number Nbins directly determines the maximum frequency that can be captured
by the model. Because of time-frequency uncertainty, it also determines the temporal
resolution of the learned temporal shapes.

Idle-active Fraction The parameter qid ∈ (0, 1) is only used for outlier scoring and
determines the fraction of observers that are considered idle and, hence, not used for
computing outlierness. qid mainly depends on the variability of the data stream. Hence,
if a high number of clusters appear and vanish at different times, only a small fraction of
these clusters is relevant at a specific point in time, thus giving rise to a high qid. Even
for stationary or almost stationary data, a minimum qid ≈ 0.3 is reasonable to ensure
that outliers are not used as active observers, which would distort outlier scores.
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Figure 4.4: Outliers and out-of-phase outliers in synthetic data for a fraction of out-of-
phase outliers of 0.5%.

Model Parameters k and x The parameters k and x have been inherited from regular
distance-based outlier detection algorithms. Intuitively, by increasing the model size with
k, more information can be absorbed in the model. On the other hand, Zimek et al. [247]
have shown that subsampling (i.e., using smaller models) is prone to improve outlier
detection. If the processed data are highly diverse in either a temporal or a spatial sense,
increasing k is likely to be beneficial. Processing speed should also be considered in the
choice of k.

The x parameter is inherited from nearest-neighbor algorithms, in particular from kNN.
For an overview, we refer to related work conducted specifically on selecting a suitable
number of nearest neighbors [110, 79].

Final Remarks for Parameter Adjustment T , T0 and Nbins are intuitive parameters
that can be easily adjusted based on domain knowledge. On the other hand, we recommend
setting k and x using a data-driven approach based on preknowledge, e.g. using parameter
search on a validation dataset. For our experiments described in the following Section 4.3.3,
values between k ∈ [100, 1000] and x ∈ [3, 9] have shown good results.

In short, qid, k and x are significantly robust, meaning that performances are stable for
a wide range of values and that most applications work properly with default, general-
purpose configurations. The later observation is particularly true for qid and x, since k is
obviously more dependent on the expected space geometries and different periodicities in
data.

4.3.3 Experimental Evaluation

Synthetic Data

In a first proof of concept, we show how our method captures temporal patterns and
reveals out-of-phase outliers. For this, we used MDCGen [128] to generate a synthetic
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data stream consisting of 5 clusters which vanish and reappear at different times and
periods. We added both spatial and out-of-phase outliers into the data stream.

Figure 4.4 shows an excerpt of the generated data stream with a fraction of 0.5% of
out-of-phase outliers. Hence, while normal outliers are distributed across the entire
feature space, out-of-phase outliers occur in the same spatial location as clustered data,
but their time of appearance does not meet the temporal shape of clustered data.

In Figure 4.5, we plot the ROC-AUC for different ratios of out-of-phase outliers to data
points in one active cluster. We also include ROC-AUC results for traditional algorithms
to show the effect of out-of-phase outliers. All algorithms have been properly tuned to
capture at least one full period. As the number of out-of-phase outliers increases, the
performance of traditional algorithms significantly plummets, whereas our method retains
the highest ROC-AUC at all times. The simple explanation for this striking difference is
that our algorithm is the only one capable of detecting out-of-phase outliers.

Note that the generated dataset only serves the purpose of evaluating the ability to
detect out-of-phase outliers.

Outlier Detection Performance

To evaluate our method in comparison with state-of-the-art stream outlier detection
algorithms, we used popular outlier detection datasets of sufficient length. Unlike the
majority of existing work on outlier detection, we required datasets that fit characteristics
of stream data and allow assigning time stamps to each data point.

Datasets and Metrics. We selected the KDD Cup’99 dataset [4], which aims at
detecting network intrusions based on a number of network and host features and, similar
to previous work [173, 174, 63], considered User to Root (U2R) attacks as outliers
over normal traffic, resulting in 976,414 data points with an outlier proportion of 0.4%.
Additionally, we selected the recent SWAN-SF [33] dataset, which collects data about
solar flares, and used preprocessing scripts provided by Ahmadzadeh and Aydin [18].
For SWAN-SF, we assigned a normal label to the majority class and an outlier label to
the remaining classes, resulting in 331,185 data points with an outlier portion of 17.2%.
In both experiments, we randomly sampled 50% of the data stream for randomized
hyperparameter search and used the other half for evaluation. For an overview of the
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Figure 4.5: Outlier detection performance for synthetic data.
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Table 4.3: Performance comparison with different outlier detection algorithms.

SWAN-SF [33] KDD Cup’99 [4]
AAP AP@n ROC-AUC AAP AP@n ROC-AUC

SW-KNN 0.69 0.56 0.91 0.07 0.15 0.72
SW-LOF 0.15 0.12 0.58 -0.00 -0.00 0.67
Loda [181] 0.72 0.54 0.91 0.10 0.13 0.92
RS-Hash [198] 0.73 0.55 0.91 0.13 0.15 0.95
RRCT [107] 0.23 0.19 0.69 0.07 0.05 0.85
Our method 0.73 0.55 0.91 0.33 0.54 0.97

used ranges of hyperparameters, we refer to the code repository of this thesis. Metrics
for evaluation are AAP [241, 63], AP@n [72, 63] and ROC-AUC [63].

Algorithms and Ensembles. For providing a comparison with existing stream outlier
detection algorithms, we relied on the dSalmon framework we have introduced in Sec-
tion 3.2, which provides efficient implementations of several stream outlier detectors that
have been proposed in literature. Since our algorithm is randomized, it is suitable for
ensemble setups. This allows performing several algorithm runs with identical parameters
and identical fed data, but with different random tapes, therefore obtaining different
observer sets. In general, ensemble algorithms are known to exhibit superior performance
over base classifiers [247]. In our case, we observed only small differences in predictions for
algorithm runs with different random tapes. For optimal outlier detection performance,
we therefore recommend to apply the algorithm in a small ensemble. For our experiments,
we used an ensemble size of 9.

Outlier Detection Performances. Experiment results in Table 4.3 show how our
method is able to keep up with or outperform state-of-the-art algorithms for streaming
outlier detection. The strongest competitor is RS-Hash [198]. Compared to RS-Hash,
our method has the benefit of providing interpretability of assigned outlier scores, which
is a major requirement for many application fields.

For the SWAN-SF dataset, our method achieves performance results on the same level as
the best algorithms used. However, for the KDD Cup’99 dataset, detection performance
of our method stands out. In particular, AAP and AP@n indicate a substantially better
performance. Due to the unbalanced nature of outlier detection tasks, the precision-
recall curve has been argued to be better suited for evaluating outlier detection than
the ROC curve [194]. Hence, since the AAP can be interpreted as the area under the
precision-recall curve [57], a high AAP is indicative of detecting outliers reliably. The
higher AP@n additionally indicates that our method assigns highest outlier scores to
several true outliers, which go unperceived with traditional methods.
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Figure 4.6: Learned magnitude spectrum (left), one-hour temporal plots (middle) and
24-hour temporal plots (right) for four exemplary observers when processing network
data captured in an e-charging infrastructure.

Disclosing Insights about the Data. Reasoning about the nature of the data used,
observed results seem consistent. Considering how outliers have been defined in the
SWAN-SF dataset, we do not expect that outliers break possible temporal periodicities
in samples from solar flares. On the other hand, the KDD Cup’99 dataset describes
events in a computer network, which are expected to exhibit strong temporal patterns
due to human activity. Such behaviors can be grasped and leveraged by our method.
Here, the superior detection of our method not only indicates that the underlying data
show temporal patterns, but also that some of the U2R attacks can indeed be considered
out-of-phase outliers.

Discovery of Temporal Patterns: Machine-to-Machine Communication

Application Context. The discovery of temporal patterns in processed data is a
major use case of our method. To evaluate this feature, we used it to study network
traffic captured in a critical infrastructure. In particular, the analyzed data belong to the
network of an energy supply company that connects charging stations for electric vehicles.
The network communication satisfies management, accounting and maintenance aspects1.
Network communication for these purposes predominantly adopts the OCPP protocol [19].
In addition to OCPP, other network protocols commonly used in IP networks (e.g., DNS)
are also common. Due to the large portion of machine-to-machine communications, we
expected to discover distinct periodic patterns in this data.

Preprocessing and Parameters. We preprocessed the data using a feature vector as
described in [230], resulting in 13 million flows during a 1 month period. We parameterized
the algorithm using T = 1 week, 2000 frequency bins and T0 = 2000 minutes, obtaining a

1While we embrace reproducible research, issues related to confidentiality, security and privacy
unfortunately prevent us from making the data publicly available.
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minimum period of 1 minute. We selected this parameterization in correspondence with
expected temporal patterns. Hence, with a minimum period of 1 minute, most periods
typically selected by humans can be captured. We used 400 observers as a reasonable
tradeoff between model complexity and algorithm runtime.

Capturing Periodical Patterns/Clusters. Figure 4.6 shows on the left side examples
for the magnitude spectrum learned for observers. Hence, different clusters show diverse
temporal patterns. While observer 1 shows no or just weak periodicities, observer 2 shows
a clear 5 minute periodicity and observers 3 and 4 show a 10 minute periodicity. From the
learned FT, a corresponding temporal shape can be constructed in terms of an inverse
FT as depicted in equation 4.5. Figure 4.6 also shows the reconstructed temporal shape
plotted over a 1 hour and 24 hour period. Hence, beneath the periodicities already found
when inspecting the FT directly, the temporal shape for observers 3 and 4 additionally
shows periodicities of a longer period of approximately 2.5 hours.

Identifying Clusters in the Application Context. Extracting network flows corre-
sponding to the observers confirmed that the found temporal patterns are reasonable. For
example, observer 3 corresponds to ICMP ping traffic that happens regularly to ensure
that network devices are alive. Observer 4 corresponds to DNS requests that charging
stations perform to resolve the DNS name of the OCPP server to its IP address and
transmit meter readings. For observer 4, the periodicity presumably emerges from DNS
caching, so that every second request for transmitting meter readings can be performed
without having to perform a DNS lookup.

On the other hand, observer 1 corresponds to protocol heartbeat messages. The fact
that no clear periodicity is observed for this observer might be due to the requesting
devices not being time-synchronized or by deviating device configurations. Alternatively,
heartbeat messages might take place with a very high frequency, so that no periodicities
exist at the analyzed time scale.

Identifying Outliers in the Application Context. Figure 4.7 shows outlier scores of
points in time order. The manual inspection of flows corresponding to highest outlierness
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Figure 4.7: Assigned outlier scores for network data captured in an e-charging infrastruc-
ture.
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(shown in the center of Figure 4.7) revealed that they belong to firmware update processes.
Since firmware updates took place only during two days in the monitored time span, high
outlier scores are consistent.

Checking Learning Stability. Finally, we also checked whether our empirical results
meet the expected algorithm behavior described in Section 4.3.2 with respect to the
sampling of data points as new observers. Figure 4.8 shows how many data points have
been sampled as new observers during the first two weeks. With T = 1 week and k = 400
observers, 400/7 ≈ 57 observers should be sampled each day according to equation 2.
This theoretical conjecture shows good agreement with the empirical results. Figure 4.8
also shows that the model is not instantly filled with observers within the first hours,
but it is instead built up during the first days. Since data seen within the first couple of
hours might not be representative for the remaining data, this transient behavior boosts
the swift discovery of a representative model.

Discovery of Temporal Patterns: Darkspace Data

Application Context and Parameterization. We additionally tested our method
on the publicly available CAIDA “Patch Tuesday” darkspace dataset [62]. During
preprocessing we aggregated features by source IP address using the AGM feature vector
[130], which has been proposed specifically for analyzing darkspace data. We applied our
algorithm with T0 = 1 week and T = 10 weeks and 100 observers and 100 frequency bins,
resulting in a minimum period length of about 100 minutes.

Capturing and Identifying Periodical Patterns/Clusters. Figure 4.10 shows the
magnitude of the Fourier coefficients of the three strongest observers. The evident peaks
in Figure 4.10 occur at the 7th and 14th frequency bin, corresponding to diurnal and semi-
diurnal periodicities, which has been reported before for some undesired traffic classes
in darkspace data [132, 130], namely, among others, TCP scans to port 445, Confick-C
worm attacks or BitTorrent misconfigurations for diurnal patterns, and horizontal scan,
vertical scan and probing activities on the UDP protocol for semi-diurnal patterns.
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Figure 4.8: Sampling of arriving data points as new observers when processing network
data captured in an e-charging infrastructure.
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Figure 4.9: Inverse FT of the top four observers after processing darkspace data.
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Figure 4.10: FT of the top three observers after processing darkspace data.

Also in this case, we performed the inverse FT as described in Equation 4.5. Figure 4.9
shows the obtained temporal shape for the three strongest observers. The diurnal behavior
observed in Figure 4.10 can be clearly recognized in Figure 4.9. The second observer in
Figure 4.9 shows a slightly different and less pronounced temporal behavior, justifying
our approach of analyzing temporal behavior locally on a per-observer basis.

4.3.4 Discussion

Big data frequently arrives in data streams and requires online processing and analysis.
We proposed a method for knowledge discovery in data streams that is able to capture
coexisting periodicities regardless of data geometries. Our method performs a single pass
through the data and builds a fixed-size model consisting of representative point locations
along with their temporal behavior in Fourier space. We showed equal or superior
performances compared to state-of-the-art algorithms when testing outlier detection
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in established evaluation datasets. Moreover, we showed that our method can be an
important tool for understanding and visualizing the spatiotemporal behavior of steadily
arriving real-world data.

4.4 Separating Flows in Encrypted Tunnel Traffic
Notice of adoption from previous publications (Section 4.4)
Parts of the contents of this section have been published in the following papers:

[117] Alexander Hartl, Joachim Fabini, and Tanja Zseby. Separating flows
in encrypted tunnel traffic. In 21st IEEE International Conference on
Machine Learning and Applications, pages 609–616. IEEE, 2022

Academic work has been predominantly carried out by myself. All authors contributed
in discussion of experiments and in proofreading of the manuscript.

In the previous sections, we have investigated the potential of ML for IDSs. However, for
practically usable analysis of network traffic, there are also further issues that need to
be addressed due to lacking related research. As we have brought up in our RQ4, one
important aspect is the increasing deployment of comprehensive encryption technologies,
for instance when accessing a network wirelessly. The ability to analyze encrypted traffic
has the potential to affect network security both on the positive, but also on the negative
side.

In fact, wireless Internet access is ubiquitous. It is common for both companies and private
households to perform Internet access using a wireless network implemented using the
IEEE 802.11 [5, 6, 8, 10, 11] family of standards. Since wireless 802.11 networks have no
real barriers of physical access, strong encryption is crucial for protecting both the users’
sensible information and their privacy. After a series of discovered flaws [88, 218, 219, 220],
the most recent technique for frame encryption is currently believed to be secure. But is
strong frame-level encryption sufficient for protecting the users’ invaluable privacy from
prying eyes?

As we will show in this section, privacy is still at risk. As a fundamental limitation,
encryption on a frame-level implies that transmission patterns of generated traffic, like
packet lengths or IATs between packets, are openly accessible by anyone monitoring the
air interface. While it has been shown previously that these patterns are sufficient for
classifying encrypted traffic obtained from a single application, the problem remained
that in real traffic packets from various applications arrive in an interleaved fashion,
impeding an in-depth traffic analysis.

In NID, packets are commonly divided into flows. Since individual packets do not
provide enough information, only by dividing observed traffic into flows it is possible
to perform classification of network traffic. Treating the entirety of observed traffic as
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Figure 4.11: Separating flows in encrypted tunnel traffic.

one flow therefore might shatter the success of traffic classification, but at least shadow
low-bandwidth communication in front of high-bandwidth communication.

The key to powerful analysis of encrypted network traffic is thus the ability to assemble
observed frames to their respective network flows, which then can be analyzed using
established ML methods. This is a non-trivial task, since features that are typically
used for this purpose, like port numbers and IP addresses, are not available if traffic
is encrypted on a lower layer. In this thesis, we approach this task by building a deep
learning-based model of individual packets’ features in network communication. In a
second step, we then devise an algorithm for finding a separation into flows that maximizes
the likelihood for individual flows to be genuine.

The problem studied in this section is not limited to the analysis of encrypted wireless
traffic, but rather addresses a general encryption paradigm. Beneath encrypted wireless
traffic, it also concerns analysis of traffic in encrypted VPN tunnels. In many cases,
such techniques are used for the very purpose of providing better privacy to the user,
which highlights the impact of any method that is able to extract information about used
applications. In some cases, our approach also addresses the separation of aggregated
application data in encrypted TLS connections. Even when combining these encryption
techniques the requirements we postulate in this work in many cases remain valid,
reinforcing the relevance of the studied problem.

With this section, we make several major contributions:

• We show that, under certain conditions that in practice are often satisfied, it is possible
to assign individual packets in encrypted tunnel traffic to network flows, weakening an
inherent widespread believe that tunnel encryption is able to provide strong privacy
properties. We aim to raise awareness for this problem in particular in environments
where security and privacy are of major importance.

• We implement our proposed approach, evaluate it on several publicly available real-
world network traces and carefully analyze its abilities based on synthetically crafted
network flows. We thus show that packets from interleaved flows can indeed be
separated into their respective flows with good accuracy.

• By providing an approach for analyzing encrypted tunnel traffic, we lay the groundwork
for implementing NID on encrypted tunnel traffic. The identification of unwanted
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traffic in VPN tunnels despite the presence of benign traffic can be a crucial tool in
early attack detection.

• Fundamentally, our method is based on finding a separation that reduces the anoma-
lousness of individual flows with respect to our learned deep learning model. Hence,
our results indicate that our learned model constitutes a potent anomaly detector,
which by itself also has application areas in NID without requiring labeled attack data.
By operating on packet features, our method provides anomaly scores at any time
in the course of a flow, and, hence, in contrast to many established methods, allows
attack detection after receiving a small number of packets.

The remainder of this section is structured as follows. In Section 4.4.1 we review several
contemporary encryption techniques and show under what circumstances the encrypted
traffic shows patterns that allow profound analysis. In Section 4.4.2, we construct our
method for separating encrypted packets belonging to different flows. In Section 4.4.3,
we show based on experimental results the feasibility of our proposed approach. Finally,
Section 4.4.4 discusses defense strategies to enhance the security of network protocols.

4.4.1 Tunnel Encryption Techniques

In several network traffic encryption techniques, packets from distinct flows are interleaved
when being transmitted over an encrypted link. In this thesis, we designate such techniques
as tunnel encryption techniques, derived from the most apparent scenario of VPN tunnel
encryption.

We show an example in Figure 4.11. In Figure 4.11, a user uses two applications that
both originate one network flow each. Instead of transmitting them directly over the
Internet, he uses a VPN tunnel for secure transmission to a remote destination. An
attacker on the path therefore can capture the packets, but can neither decrypt the
packets’ contents nor does he know which flows the packets belong to. Hence, before
analyzing individual flows, it is necessary to associate individual packets to their flows,
which is the task we explore here. In Figure 4.11, the attacker then leverages the found
separation to perform classification and detect the type of applications that are used.
This procedure might constitute steps in a larger attack chain, e.g., if the knowledge of
used applications is used for launching a known-plaintext attack on the used cipher.

Our method for separating flows is based on a model trained in advance on non-interleaved
network flows showing patterns as present in the analyzed packet sequence. If the
potentially used applications and services are known, it is a viable assumption that
training data can be acquired by capturing traffic of the respective applications beforehand.
An advantage compared to many other scenarios of ML is that only benign traffic is
needed and no expensive labelling needs to be done.

To be able to perform the actual separation procedure, we require that an upper bound
for the number of flows in the analyzed packet sequence is known. It has been shown that
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the number of flows in encrypted tunnel traffic can be estimated using ML methods [167].
Additionally, we postulate three requirements for the encrypted traffic:

• Individual packets are distinguishable within encrypted traffic.

• Packet lengths of individual packets can be deduced from encrypted traffic.

• IATs between packets can be deduced from encrypted traffic.

From a general viewpoint, it is surprisingly likely that these requirements are satisfied
for traffic encryption in today’s packet switched networks. Reasons for this are that
(1) protocol designers are usually interested in avoiding unnecessary latency in packet
forwarding and (2) protocol designers additionally are usually interested in saving link
capacity. In the light of (1), to reduce latency, implementations in many cases perform
encryption on a per-packet basis and process and forward a packet as soon as it is received.
Hence, IATs of encrypted packets can be used as very good estimate of the IATs of
unencrypted packets. Also aggregation of several packets might introduce additional
latency and therefore is not frequently used. Considering (2), it also is unlikely that
random padding of substantial length is added to a packet, since this would increase
required link capacity. Hence, the size of an unencrypted packet can be deduced from an
encrypted packet by simply subtracting encryption overhead.

In the following sections, we will describe specific network protocols in more detail.

VPN Tunnels

VPN tunnels implemented using, e.g., the IPsec [91] protocol suite are commonly used
for connecting different sites of enterprise networks across the public Internet, but also
for securely connecting a single user to a company’s network from arbitrary locations,
e.g., when working in home office. Considering both use cases, VPN tunnels become
increasingly important.

In what follows, we consider in more detail IPsec, which is a standardized and commonly
used protocol suite for implementing secure network communication. IPsec operation
can be divided into transport mode and tunnel mode [91], where tunnel mode is used for
implementing gateway-to-gateway or host-to-gateway VPN tunnels. When using IPsec in
tunnel mode for achieving confidentiality and authenticity, an ESP [142] and an AH [141]
header are added to each transmitted IP packet before it is encapsulated in the IP packet
that is sent to the remote destination. In the light of our current research, the most
important aspect of this procedure is that encryption is performed per packet, since IPsec
does not have means of packet fragmentation or aggregation. Hence, for each unencrypted
packet one encrypted packet is seen on the public Internet link. For performance reasons,
packets are encrypted and passed on as soon as they are received, which means that
IATs of packets seen on the public Internet link approximate the IATs of unencrypted
packets well. We make similar observations for packet lengths. For modern ciphers like
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AES-GCM [162] no additional encryption padding has to be introduced, which allows
an almost exact deduction of the length of the unencrypted packet from observing an
encrypted packet. In particular, due to the alignment required by ESP [142], the length
of the unencrypted packet can be deduced with an accuracy of 4 byte for IPv4 or 8 byte
for IPv6. For concealing the length of transmitted packets, IPsec supports a Traffic Flow
Confidentiality (TFC) [142] padding, which, however, is rarely used to avoid occupying
more link capacity than necessary.

Considering both, IATs and packet lengths, our requirements are therefore likely to be
satisfied for IPsec VPNs in practice.

Wireless Networks

Wireless network implemented using one of the standards 802.11a,b,g,n [5, 6, 8, 10]
or 802.11ac [11] are a popular communication technology for accessing a LAN or the
Internet. Encryption of the transmitted data nowadays is usually implemented using
either WPA2 [9] or WPA3 [20]. In both cases, encryption is performed on a per-frame
basis, where encryption encompasses the IP packets and LLC packet headers. Not only can
an adversary within the network’s range capture source and destination MAC addresses of
a frame, but in many cases also IATs and packet lengths of packets sent between a wireless
device and the base station can be deduced. While frame fragmentation is supported,
information for reassembly can be deduced from unencrypted data. Furthermore, either
CCMP [9] or AES-GCM [162] are used for frame encryption, which both do not introduce
padding, allowing an accurate deduction of packet length. Moreover, capturing of
encrypted wireless communication does not require specialized hardware, but can in
many cases be done by activating monitor mode of consumer hardware [15].

For wireless networks, we identified two techniques that might impede an in-depth
analysis of encrypted traffic as described in this thesis. In particular, low-power devices
frequently enter power-saving mode where the base station buffers received packets for
a wireless device and transmits them only when receiving a PS-Poll frame from the
device [16]. Hence, the exact time when the packet was received can no longer be
determined. However, the latency introduced by power-saving mode also has negative
impacts on experienced network performance. Hence, power-saving mode is only used by
low-power devices and enabled only when the network connection is not actively used.

A more distinct obstacle for the analysis of encrypted wireless communication might
be frame aggregation. In more detail, modern wireless networks allow aggregation
of individual packets in either Aggregate MAC Service Data Unit (A-MSDU) frames
or Aggregate MAC MAC Protocol Data Unit (A-MPDU) frames. When packets are
aggregated into an A-MSDU [10] frame, the lengths of the contained packets can no
longer be determined from observing the encrypted communication alone, since all
packets are encrypted as a single payload. However, A-MSDU frames are sensitive
to bit errors [98, 190]. For this reason, frame aggregation using A-MPDU frames
outperforms A-MSDU frame aggregation in practical scenarios [98, 126]. A-MPDU
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Figure 4.12: The architecture of our deep learning model.

frames are therefore more commonly used for aggregating frames and only A-MPDU
frame aggregation is defined by the recent 802.11ac amendment [126]. In contrast to
A-MSDU frame aggregation, for A-MPDU frame aggregation each packet is encrypted
individually, allowing an adversary to deduce a packet’s size from observed encrypted
frames.

Aggregated Application Data

As a final use case, we note that in certain scenarios also transport-layer encrypted
data using TLS might satisfy our requirements. This concerns scenarios, where a server
aggregates data from multiple clients using a single TLS connection. For instance, in a
common reverse proxy setup, a proxy server passes on client requests to web servers and
might reuse a single TLS connection for serving multiple client requests.

In preliminary experiments, we have verified that OpenSSL, the most common library
for TLS communication, creates TLS records for each write request received from the
application. Hence, when processing a request from a given client, it is likely that packets
from distinct clients are passed on in individual TLS records. TLS record lengths can be
deduced from observing the encrypted TLS session’s packets.

Nested Encryption Techniques

Even when nesting multiple layers of the same or distinct encryption protocols, it might
remain possible for an attacker to perform traffic analysis. Under the assumption that
the attacker knows the victim’s setup, he can deduce packet sizes by subtracting header
lengths of respective security protocols from the observed frame length. Also in this case,
if individual security layers do not introduce significant latency, the observed IATs of
encrypted frames can be used as estimate of IATs of unencrypted communication.

For instance, when using a VPN over a wireless link it might remain possible for an
attacker in the victim’s vicinity to perform analysis of observed traffic. We consider this
possibility to be particularly striking, since the use of a VPN is often motivated by the
aim to increase confidentiality and privacy of the exchanged data.
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4.4.2 Encrypted Flow Separation

Powerful analysis of encrypted network traffic is achievable for the protocols outlined
above, if it is possible to separate packets belonging to different flows. We approach
this task in two steps. First, we develop an anomaly detector that is able to identify
individual anomalous packets in a flow, hence allowing to detect if packets from different
flows are shuffled. Second, we then search for the separation of flows that minimizes the
total anomalousness of observed packets. We now discuss both problems in detail.

Features

With the assumptions made in the previous Section 4.4.1, the observed network trace
consists of a sequence of packets, where for each packet the time of arrival, its length
and the direction of transmission (received/sent) is observed.

Each packet i is represented by a feature vector of the form

x(i) =


Packet direction
log

(
Packet length

1B

)
log

(
IAT+1µs

1ms

)
log

(
Directional IAT+1µs

1ms

)

 . (4.6)

Here, with IAT we specify the time difference of packet i to the flow’s previous packet
independent of packet direction. In addition to the IAT, we use the directional IAT,
which specifies the time difference to the flow’s previous packet travelling in the same
direction. While the plain IAT can provide additional information about traffic patterns
by including server response times, the directional IAT in many cases can provide more
accurate models of traffic patterns, since it avoids the influence of round-trip latency to
the remote destination.

We note that when only observing encrypted traffic, the feature vector in equation 4.6
cannot be computed in advance, since the association of packets to flows has to be known
to be able to compute IATs. Hence, as we will discuss later, our algorithm forms x(i)

on-the-fly during algorithm execution.

For packet lengths and IATs, we consider relative differences of feature values to yield more
information than absolute differences. This assertion holds particularly for IATs, which
might range from fractions of a second to more than an hour. As shown in equation 4.6,
we therefore process packet lengths and IATs in logarithmic scale to transform relative
differences to absolute differences, which eventually are relevant when discretizing values
into histograms, as we will describe in the next Section 4.4.2.

Packet-based Anomaly Detection

For separating packets into flows, we first develop a method to assess whether a flow
looks normal or shows unusual patterns that might be the result of mixing packets of
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distinct flows. For this, we build a packet-based anomaly detector that is loosely based
on Loda [181], a well-known method for on-line anomaly detection in data streams. In
Loda, k random projections are generated from the feature space and a histogram is
built from the data for each random projection to establish a model of normality. If
pi(·), i ∈ {1, . . . , k} denote the built histograms, wi denote projection vectors and x
denotes the feature vector, Loda uses the anomaly score

s(x) = −1
k

k∑
i=1

log pi(xTwi), (4.7)

which is shown to coincide with the logarithmic joint probability density of projected
features under the assumption that projected features are stochastically independent.
The set of histograms of random projections, hence, constitutes an ensemble of weak
learners, which is shown to provide a strong detector of anomalies [181].

For our intended scenario, we cannot use Loda in a straightforward way, since we
require assessing anomalousness on a per-packet basis, thus incorporating the position
in the packet’s flow. Depending on the packets seen previously in the flow, the model’s
histograms have to be updated to reflect observing different packet features depending
on the type of flow and depending on packet feature values seen previously in the flow.
To account for these requirements, instead of static histograms, we use a deep NN to
compute histograms that are used for assessing anomalousness of packets. Figure 4.12
shows our network architecture. We use a deep architecture deploying LSTM units for
extracting information from the sequence of packets. At the same time, we consider
the feature vector of the next packet in the flow and perform random projections x̃Twi

with i = 1, . . . , k from the z-score normalized feature vector x̃. Normalization values
for scaling can be obtained from data used for NN training and elements of projection
vectors wi are chosen independently at random from N (0, 1). For each dimension of
the projected feature vector, the value is then discretized into 50 bins to form a one-hot
encoded label the NN is trained on using categorical cross entropy loss.

Although NN calibration has recently been questioned [168, 136], NNs are generally
understood as probabilistic classifiers, so that the learned output of softmax layers can be
interpreted as to indicate probability for observing a certain discretized projection value.
Hence, the NN’s outputs can be pictured as extension of Loda’s static histograms to our
setting, where we require a probabilistic model of the expected next packet’s features.

For being able to reassemble packets into their flows based on an anomaly score, the
major requirement for the anomaly score is to detect an unusual sequence of packet
feature values. Hence, instead of just assessing whether the combination of the individual
packet’s feature values is reasonable, it is more important to assess whether these feature
values are expected based on packets seen previously in the flow. Mechanisms leveraged
by our proposed method for achieving this goal are threefold:

1. Our NN directly predicts the probability distribution of packet features observed in
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the next packet. In this probability distribution, an unexpected packet will be assigned
a low probability and, hence, a high anomalousness.

2. Since the NN is composed of recurrent units, feeding a wrong sequence of packet
features as input is likely to impair the network’s prediction. This principle is related
to the functioning of autoencoders, which fail to reconstruct the input well if it does
not correspond to patterns observed in training data.

3. As variants of our method, we consider predicting packet features of the next two
packets and of just the next packet. Probability distributions predicted by our NN are
able to express stochastic dependency of used features. If features are composed of
two consecutive packets, a high joint probability indicates that a two-packet sequence
is correct. In other words, even if our NN was not able to make any sense of input
features and only learned a constant probability distribution as output, maximizing
the joint probability of two consecutive packets’ features would still provide some
information about genuine packet sequences.

Solving for Packet Associations

Being able to assess anomalousness of packets in a flow, the second step is to find a
separation of packets into flows that minimizes total anomalousness. We use maximum
likelihood estimation based on an algorithm similar to the Viterbi algorithm [225].

Let F ∈ N denote an upper bound for the number of flows in the processed traffic
and n ∈ N the total number of observed packets. We define an association vector
a ∈ {1, . . . , F}n, which expresses the unknown information of which packet belongs to
which flow, i.e. ai indicates the flow 1, . . . , F packet i belongs to. We are interested in
finding the most likely association vector based on observed packet features x(i),

â = arg maxaP
(
a
∣∣x(1), . . . ,x(n)

)
(4.8)

= arg maxa

P
(
x(1), . . . ,x(n)∣∣a)P (a)
P
(
x(1), . . . ,x(n)) . (4.9)

Assuming uniform a-priori probability P (a) = F−n and omitting terms independent of
a, â can be written

â = arg maxaP
(
x(1), . . . ,x(n)∣∣a) . (4.10)

Splitting the joint probability into individual terms and writing the product as addition,
we obtain

â = arg maxa

n∑
i=1

logP
(
x(i)∣∣x(1), . . . ,x(i−1),a

)
. (4.11)

P (x(i)|x(1), . . . ,x(i−1),a) can be evaluated from the histograms generated by our NN as
specified by equation 4.7. Hence, equation 4.11 theoretically specifies how to compute
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â based on our NN, it requires on the order of Fn NN evaluations, which in practical
scenarios is infeasible due to the exponential increase with n.

To solve for â, we use an algorithm that approximates the exhaustive search through
{1, . . . , F}n by truncating the set of considered combinations to the best R ∈ N combina-
tions after each processed packet with, e.g., R = 1000. This approach is similar to the
Viterbi algorithm [225], where the main difference is that we use a continuous state space
in this thesis. Algorithm 4.3 shows the algorithm used for finding the â that maximizes
P (a|x(1), . . . ,x(n)).

Space and Time Complexity

Time complexity can be analyzed based on Algorithm 4.3. In Algorithm 4.3, time
complexity is clearly dominated by NN evaluations in line 8. Since A is pruned to R
association vectors in line 13, each packet involves at most RF loop iterations. Hence,
NN evaluation incur a time complexity of O(RnF ). An important aspect is, however,
that the two inner loops can be easily executed in parallel. In more detail, NN evaluations
can be combined into a single batch and be computed highly efficiently by leveraging
GPU computing capabilities.

Considering space complexity, during algorithm execution, we need to store NN states
and one histogram per projection dimension for F flows for |A| association vectors, which
involves a complexity of O(RF ). Since additionally the association vectors themselves
need to be stored, we obtain a total space complexity of O(RF ) +O(Rn).

4.4.3 Experiments

Preliminary: Traditional Attack Detection

A popular application domain of ML in the context of network traffic is NID. Presuming
that network attacks show anomalous traffic pattern when compared to normal, benign
flows, our approach can be used for NID.

The most traditional approach for NID is using a purely supervised technique, which
uses both labeled benign data and attack data for training the classifier. In the previous
chapters we have explored to what extent unsupervised techniques can be used for attack
detection, and we showed that still many challenges need to be addressed when using
unsupervised techniques in application. A semi-supervised approach, as depicted in this
section, requires only labeled benign data, which in many cases is easier to acquire than
representative training data for attacks. If a good detection accuracy can be achieved,
an approach as used in this section might be favorable for attack detection compared
to pure supervised learning. For instance, new, unknown attacks cannot possibly be
detected when requiring labeled attack data.

We used the CIC-IDS-2017 [203] and UNSW-NB15 [170] datasets for assessing the ability
of our approach to detect network attacks and, hence, to evaluate whether anomalous
network flows can reliably be detected. In contrast to the flow separation task presented
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Algorithm 4.3: Solving for packet associations a for separating flows.
1: Set A ← {()}, P() ← 0.
2: Set S(),f ← 0, H(),f (·) = 1∀f ∈ 1, . . . , F .
3: for each packet i ∈ 1, . . . , n do
4: for each a ∈ A do
5: for each flow f ∈ 1, . . . , F do

6: Set ã←
(

a
f

)
and add ã to A.

7: Set Pã ← Pa − 1
k

∑k
j=1 logHa,f (x(i)Twj)

8: Evaluate the NN with state Sa,f and features x(i), resulting in new state Ŝ
and histograms Ĥ(·).

9: Set Hã,f̃ ←
{
Ĥ, if f̃ = f

Ha,f̃ , otherwise

10: Set Sã,f̃ ←
{
Ŝ, if f̃ = f

Sa,f̃ , otherwise
11: end for
12: end for
13: Truncate A to R combinations a with highest Pa.
14: Remove entries Pa, Ha,f , Sa,f if a /∈ A.
15: end for
16: Output â = arg maxa∈APa.

above and evaluated below, for an anomaly detection task more packet features can be
used. In particular, beside packet lengths, IATs and packet direction, we additionally use
port numbers and, if TCP is used on the transport layer, TCP protocol flags.

Our obtained results are depicted in Table 4.4. While for UNSW-NB15 only a moderate
performance can be obtained with our semi-supervised setting, the obtained performance
for CIC-IDS-2017 is striking. A likely reason for the observed substantially different
performance obtained for both datasets are the different contained attack types and their
proportions. It is expected that different attack types are detected more and less reliably
depending on how similar they appear to benign traffic.

While the further exploration of our proposed anomaly detector for NID tasks seems to
be a promising task for future research, in this chapter we only aimed at the affirmation
that our architecture can detect anomalous traffic effectively.

Table 4.4: NID results when using our proposed architecture as anomaly detector.

Dataset ROC-AUC AP@n AAP
CIC-IDS-2017 [203] 0.996 0.976 0.998
UNSW-NB15 [170] 0.843 0.096 0.085
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Datasets

We base our experimental evaluation on both, a synthetically created dataset and real-
world network data.

Synthetic Data The benefit of synthetically created flows is that it allows us to closely
analyze performance with respect to patterns in the data. For creating the synthetic
dataset, we used py-virtnet2 to set up a simulated network consisting of two hosts
connected over one router, where the one-way-delay between both hosts has a value of
20ms with a standard deviation of 2ms. Using this simulated network, we created three
types of flows:

• A steady stream consisting of UDP packets transmitted with a constant inter-packet
interval of 50ms. We used packet sizes of 60B, 100B, 150B or 200B, where packet
sizes are constant throughout a flow. Due to the distinctive traffic pattern we expect
this traffic type to deliver best results. However, due to the simulated jitter also this
traffic type is no trivial scenario. In practice, this type of traffic can be observed when
streaming audio or video data.

• A bursty UDP stream consisting of blocks of data. Again, we transmitted packets
with a inter-packet interval of 50ms and packet sizes of 60B, 100B, 150B or 200B, but
every 15 packets we added an additional random inter-burst interval between 1.5s and
2.5s. This type of traffic can similarly be observed for multimedia traffic, depending
on the used compression schemes.

• TCP traffic following a request-response pattern. From a client application we sent
requests with sizes of 2500B, resulting in a server’s application response with 10kiB.
We sequentially sent multiple requests on each TCP connection with a random delay
between 3s and 30s. We consider this scenario to reflect traffic observed during web
browsing, but also many other protocols based on TCP.

We used the RDM client [82] for generating UDP streams. We captured the generated
traffic on server-side of the simulated network and used go-flows [227] to extract packet
features for the flows in the captured traces based on the popular bidirectional 5-tuple
flow key. All flows in the synthetic dataset consist of approximately 100 packets, avoiding
bias of evaluation metrics described in Section 4.4.3.

Real-world Data In addition to synthetically generated data, we used captured real-
world network traces. To this end, we again used the CIC-IDS-2017 and UNSW-NB15
datasets introduced in Section 4.4.3, but only selected benign traffic samples, since we
consider only benign traffic to be representative of traffic a normal user would generate.

2https://github.com/CN-TU/py-virtnet
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Additionally, we created a dataset from network traces from the MAWI traffic archive [69].
We obtained traces from samplepoint F, which yields the most recent captures and used
a timespan from June 2021 to July 2021. Since traces in MAWI are obtained from a
major Japanese backbone, they are highly diverse. Hence, using the entirety of flows is
likely to fail. Furthermore, for a first evaluation we aim to avoid performing evaluation
on traffic with unknown patterns and, instead, are interested in performing evaluation
on traffic from which we expect a certain regularity. For this reason, we selected UDP
traffic with ports 8801, 3480 and 9000, belonging to the videoconferencing tools Zoom,
Microsoft Teams and Cisco Webex, respectively. To obtain realistic TCP traffic meeting
the same constraint, we additionally captured traffic in a charging infrastructure for
electric vehicles and added it to the MAWI traces. The predominant protocol in this case
is the HTTP-based OCPP [19] protocol. Due to the high amount of machine-to-machine
communication, we on the one hand expect this traffic to exhibit distinct patterns, but
on the other hand we expect a certain amount of randomness due to randomness of the
charging station’s uplink and interaction with other network participants, making these
network traces a good candidate for benchmarking our method.

Performance Metrics

Due to the nature of the separation task we address in this section, we cannot use the
usual evaluation metrics we have introduced in Chapter 2 for testing our method. Hence,
we introduce a set of new metrics to assess the quality of a found separation. Intuitively,
we are interested in the percentage of packets of a flow in the ground truth that are
correctly assigned to the respective flow. However, as long as all the flow’s packets (and
no further packets) are assigned to the same flow, we do not care which flows it is. Hence,
for evaluating accuracy we ignore permutations of flows, i.e. we define

Accuracy = max
α∈SF

1
N

∣∣∣{i : ai = α (âi)
}∣∣∣, (4.12)

where N denotes the sequence’s length and SF denotes the set of permutations of length
F . Furthermore, a and â denote the ground truth association vector and the predicted
association vector, respectively.

A scenario that will lead to a particularly bad accuracy score is a prediction where two
otherwise correctly predicted flows are swapped in the middle of the flows. In this case,
a single incorrect transition between flows might lead to a worst possible accuracy of 0.5.
Since we are interested in the prevalence of this problem, we use a second metric that is
less susceptible to this problem. To this end, let Ii(v) denote the lowest index j with
j > i, where vi = vj or -1 if no such index exists. We define as transition accuracy

TrAccuracy = 1
N

∣∣∣{i : Ii (a) = Ii (â)
}∣∣∣, (4.13)

the ratio of packets for which the flow’s next packet is correctly predicted. While swapped
flows affect transition accuracy to a lesser extent, single packets that are assigned to the
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wrong flow affect transition accuracy more than accuracy, since they lead to two wrong
transitions.

Additionally, we can adopt methods from evaluation of clusterings for assessing a sep-
aration into flows. When clustering, we are interested in to what extent a clustering
algorithm’s outcome agrees with the ground truth, ignoring permutations of clusters.
This question is similar to evaluating to what extent a separation into flows agrees with
the ground truth. A well-known metric for evaluating whether two clusterings agree is
the Adjusted Rand Index (ARI) [124]. The ARI measures the ratio of pairs of elements
that are assigned either to the same cluster in both clusterings or to different clusters in
both clusterings.

If flows that should be separated have different lengths, Accuracy and TrAccuracy are
biased in the sense that random guessing can achieve high metric readings. For ARI,
adjustment for chance is applied, ensuring that random labelings are assigned an ARI
close to zero.

Evaluations and Results

For evaluating our presented method, we used 90% of the respective dataset for NN
training. To craft a packet sequence for testing separation, we randomly selected 2, 3, 4
or 5 flows in the remaining 10%. We sequentially added each of the flows to the sequence
by uniformly randomly selecting the flow’s start time within the existing sequence’s
duration, leaving the flow’s IATs unchanged. Reported results are obtained by averaging
over 500 sequences, and, if not otherwise stated, the sequences’ results are weighted with
their packet count for averaging.

We evaluate several variants of our presented method:

• While the directional IAT feature in many cases exhibits strong patterns and is therefore
a valuable information, the plain IAT between bidirectionally transmitted packets
is more noisy, depends on the location on the transmission path where capturing is
performed and might not yield important information if client and server operate
to a large extent independently. To evaluate whether this feature adds more noise
than providing usable information, we evaluate whether accuracy can be increased
by omitting IAT both from NN input features and from input feature to random
projections.

• As outlined in Section 4.4.2, using features from the next two packets for random
projections might help enforcing a reasonable sequence of packet features. However,
it might also add noise to the process if the next two packets are hard to predict.
To evaluate whether basing random projection on the next two packets increases
performance, we additionally perform evaluations with only histograms based on the
next packet.

• It is an interesting question whether multiple models can be combined to obtain
superior performance. To approach this question, we additionally created a backward
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Figure 4.13: Performance results for our synthetically generated dataset.

model, i.e. we trained a model on the reversed flows. Based on both models we then
ran Algorithm 4.3 three times consecutively, using a-posteriori probabilities from run
r as a-priori probabilities for run r + 1. For each of the runs we respectively used the
forward model, the backward model, and again the forward model.

Figure 4.13 shows our obtained performance results. Among all variants we have tested,
no clear differences in performance can be observed, suggesting that all variants are able
to learn patterns in data sufficiently well, while wrong associations are common to all
studied variants. A possible explanation for this behavior is that wrong associations arise
from situations when correct separation into flows is theoretically impossible like, e.g., if
packets of the same size are transmitted at the exact same point in time.

Particularly for transition accuracy, obtained performance is surprisingly good. However,
also when considering entire flows, performance exceeds random labeling substantially,
as shown by ARI and accuracy. ARI shows to be a good proxy for accuracy, allowing
the use of ARI for a less computationally expensive evaluation if a higher number of
interleaved flows needs to be evaluated.

As expected, performance plummets with increasing interleaved flow count. It is interest-
ing that transition accuracy results are consistently markedly better than accuracy results.
Transition accuracy plummets only slightly with the number of interleaved flows. As
remarked above, such behavior might hint at flows being swapped in the middle of a flow
but are otherwise correctly predicted. Hence, according to Figure 4.13, a useful extension
might be to increase long-term dependencies either with respect to input features of
the NN or of the predicted packet features. In some practical situations, however, such
behavior seems unpreventable if the flows are of an equal type and, hence, show identical
patterns.

The number of retained configurations after each time step, R, is a parameter that severely
affects runtime of Algorithm 4.3. To provide guidance on how R has to be selected,
we tracked the ground truth solution’s rank in the Pa-sorted A, i.e. we determined
ρ(i) = 1 + |{ã ∈ A : Pã < Pa}|, after processing each packet i throughout the execution
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Figure 4.14: Maximum rank of the ground truth solution in the Pa-sorted A.

of Algorithm 4.3. After processing of the entire sequence we determined the maximum
encountered rank ρ̄ = maxi=1,...,N ρ

(i). As soon as ρ(i) exceeds the Rth position, the
ground truth solution is pruned from A in line 13 of Algorithm 4.3 and can thus no
longer be output as â, establishing the relevance of this value.

In Figure 4.14, we show the prevalence of high values of ρ̄ among all test sequences we
have evaluated. Also in this case, we observed no clear differences of tested variants. The
figure shows a severe dependence of ρ̄ with the number of interleaved flows, prompting
the use of similarly high values of R to achieve good performance. Due to the exponential
increase of possible combinations with the number of interleaved flows, this behavior
is to a certain extent expected. Figure 4.14 shows that for many sequences flows can
already be separated with a relatively small R even when separating 5 interleaved flows.
On the other hand, the figure hints at an exponential increase of R with the number of
interleaved flows. An exponential increase of R makes separation prohibitive when too
many flows need to be separated.

Aiming to provide more insight into which patterns and characteristics govern the obtained
accuracy and investigate whether observed performance meets expectations, as a next
step we selected flows created as steady UDP stream as described in Section 4.4.3 for
closer analysis. In Figure 4.15, we show the distributions of per-sequence accuracies
when separating 2, 3 or 4 steady flows, when all interleaved flows have equal packet
sizes. Hence, while the majority of sequences achieves perfect separation accuracy, the
obtained total accuracy is impacted by just a few sequences, for which accuracy drops
substantially. When separating steady flows with distinct packet sizes, we obtain perfect
accuracy of 100% in all cases with 2, 3 and 4 interleaved flows. Figure 4.16 depicts
obtained performance when separating two interleaved steady flows in more detail. In
Figure 4.16, we show the time offset between the transmissions of two packets of the two
different flows on the abscissa. Hence, perfect separation performance can be achieved if
either the two involved flows use different packet sizes or the time offset is high enough.
Different packet sizes in the two respective flows allow a simple separation by packet size.
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Table 4.5: Performance results for real-world data.

Pkt. averaging Seq. averaging
Flows Acc. TrAcc. ARI Acc. TrAcc. ARI

M
AW

I 2 0.983 0.977 0.945 0.990 0.986 0.966
3 0.957 0.950 0.910 0.970 0.968 0.934
4 0.945 0.938 0.897 0.957 0.954 0.916
5 0.932 0.926 0.884 0.945 0.944 0.902

C
IC

-
ID

S-
20

17

2 0.996 0.996 0.987 0.997 0.997 0.990
3 0.993 0.992 0.981 0.994 0.993 0.983
4 0.987 0.987 0.971 0.989 0.989 0.976
5 0.981 0.984 0.963 0.984 0.985 0.969

U
N

SW
-

N
B

15

2 0.998 0.998 0.993 0.998 0.998 0.994
3 0.996 0.994 0.988 0.996 0.994 0.988
4 0.995 0.994 0.987 0.994 0.993 0.986
5 0.991 0.989 0.979 0.991 0.990 0.980

Thus, good performance in these cases is expected. On the other hand, for equally sized
packets separation is theoretically only possible if the time offset between both flows
is high enough to obtain significant differences in the expected arrival time of the next
packet. Behavior observed in Figure 4.16 thus meets our expectations, since with our
simulated network IATs of received packets have a mean of 50ms and standard deviation
of 2
√

2ms.

Table 4.5 depicts our performance results obtained for our real-world datasets. Unlike
the synthetic dataset, flows in this case are not of constant length. For this reason, we
perform in Table 4.5 averaging based on both packets and sequences. Hence, accuracies
observed for long sequences have a stronger effect on packet-averaged results than on
sequence-averaged results. Performances reported in Table 4.5 are on the same level as
performance observed for synthetic datasets and in some cases even slightly better. We
conclude that flows contained in our real-world datasets contain enough structure and
patterns for successful separation. It is also interesting that in contrast to our synthetic
data, transition accuracies are slightly lower than accuracies. This behavior might hint at
misassociations of single packets being a more prevalent problem than swapped flows for
these datasets. Our real-world datasets contain substantially more flows of short length
than the synthetic dataset, which further supports this assumption.

4.4.4 Defenses

Our experimental evaluation showed that with an increasing number of flows both
computational requirements increase substantially and achieved accuracy drops. For
this reason, encrypted traffic from individual users is more susceptible for allowing to be
analyzed than site-to-site VPN traffic combining a multitude of flows. For the secure
design of network protocols, it is hence beneficial to avoid leaking a packet’s source and
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Figure 4.15: Distribution of per-flow accuracies (left) and transition accuracies (right)
when separating 2 flows (top), 3 flows (center) and 4 flows (bottom) with equal packet
sizes.

receiver in unencrypted data, which, e.g., is contrary to addressing in current 802.11
wireless networks.

Protocol security can also be enhanced by offending requirements we discussed in Section
4.4.1. In particular, packet aggregation and packet fragmentation are effective measures
to avoid flow separation as outlined in this thesis. However, in many cases implementing
such defense mechanisms can harm network performance by introducing additional
latency or occupying more link capacity than necessary.

4.4.5 Discussion

Tunnel encryption techniques are a prevalent technique for protecting data transmission
on the Internet. In this thesis, we showed that their security and privacy properties are
not as strong as they are frequently believed to be. We have designed a NN, which we
have shown to constitute a potent anomaly detector when used on its own. Based on this
anomaly detector, we have then devised an algorithm that is able to separate observed
encrypted traffic into their original flows without requiring the ability to decrypt packets.
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Figure 4.16: Obtained performance when separating steady synthetic flows with different
time offsets.
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Our experimental evaluation encompasses both synthetic data with well-known patterns,
and publicly available real-world network traces, showing that high separation performance
can be obtained in both cases. In particular in cases where individual flows show
distinct patterns that are different from each other, separation of encrypted traffic works
remarkably well.

Encryption techniques as highlighted and discussed in this chapter form an important
pillar of the protection of modern communication networks. However, as we have shown,
more information can be recovered from interleaved encrypted flows than commonly
believed, which can form an entry point for in-depth traffic analysis and deanonymization
attacks. Achieving strong security and privacy properties requires more careful engineering
than just encrypting transmitted packets individually.
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CHAPTER 5
Explainability for IDSs using

Supervised ML

As highlighted in previous chapters, when implementing IDSs based on ML techniques,
explainability is a major demand. In particular in high-security infrastructures, the
ability to explain and interpret a decision performed by an ML system can decide about
whether the technique is adopted or not.

To a certain degree, attack detection using supervised techniques might be considered a
more straightforward task than unsupervised ML, provided that labeled data for training
is available. In this case, numerous publications have demonstrated that attacks can be
detected reliably, leaving the choice between a wide range of possible ML techniques.
However, the most promising techniques for constructing IDSs fall short in providing
explanations for performed predictions, which gave rise to creative methods for gaining
insights into how these methods arrive at their predictions and what change in input
features leads to certain changes in predictions outcomes.

In RQ2 we want to know how predictions of supervised network traffic classifiers can be
made explainable. Hence, in this chapter, we investigate whether explainability methods
can be fruitfully applied to IDSs based on ML and we introduce new methods based on
established methods from literature. To this end, we explore IDS classifiers that operate
based on extracting statistical features from each flow, resulting in tabular data that can
be processed by several ML methods in a straightforward way. Modern NN architectures
allow providing the entirety of packet features to the classifier, which provides several
benefits in practical scenarios, but makes it even more difficult to understand how
the classifier has arrived at its decision. We propose novel explainability methods for
improving the interpretability of the classifier’s output also in this case.
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5.1 Related Work and State of the Art
We refer to Chapter 2 for an overview of explainability methods that have been proposed
for supervised ML methods and that we use in this chapter. In addition to these
explainability methods, poisoning attacks on ML models are highly relevant for the
work we perform here, since we investigate to what extent such attacks can be identified
using explainability methods. Bachl [41] investigated poisoning in the context of IDSs
by implementing a backdoor into NN and RF models. They highlighted methods for
cleaning a pre-trained model to remove a potential backdoor.

In this chapter, we investigate the application of RNNs for performing NID. This
approach yields the benefit of avoiding feature engineering procedures and received a
lot of attention in the research community lately [41, 235, 223, 28, 172, 144]. Reported
detection performance results are usually at least on par to more classical IDS classifiers.

In the context of deep learning, the problem of poisoning has been investigated intensively
recently [152, 94, 205, 183, 102, 157]. Pruning [206, 102] and fine-tuning are popular
techniques to clean models from backdoors [102, 236]. Also for RFs and DTs the problem
of poisoning has been investigated and cleaning methods have been proposed [52, 68, 81].

In addition to the problem of poisoning, we study the problem of adversarial examples
in this chapter, applying an adversarial sample generation procedure to our RNN.
Since it potentially allows massively degrading an IDS classifier’s recall, the problem
of adversarial samples has been subject of many recent research efforts in security
research [41, 243, 39, 204, 217]. In this thesis, we pick up the adversarial sample
generation of [41, 116] and investigate whether classification regions as depicted by our
explainability methods are consistent with results from adversarial sample generation.

5.2 Explaining Classifications on Statistical Features
Notice of adoption from previous publications (Section 5.2)
Parts of the contents of this section have been published in the following paper:

[42] Maximilian Bachl, Alexander Hartl, Joachim Fabini, and Tanja Zseby.
Walling Up Backdoors in Intrusion Detection Systems. In Big-DAMA
’19, pages 8–13, Orlando, FL, USA, 2019. ACM

Introductory text and experiments and text writing for sections 5.2.1 to 5.2.2 were
joint work with Maximilian Bachl. Remaining text and thereby main academic
contributions outlined in this chapter originate from myself. All authors contributed
in discussion of experiments and in proofreading of the manuscript.

Training an ML model for an IDS is a challenging task, which involves massive datasets
and substantial amounts of computational power. In a practical deployment, it is
therefore reasonable to assume that the training of the model is done by a security
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company marketing either a complete IDS or just a pre-trained model that can be
plugged into a separate IDS software. If we have to question if such a security company
can be trusted under all circumstances, the problem arises that the security company
might have implemented backdoors, which circumvent the IDS. This could be motivated
by profitseeking or by government actors requiring ways to purposefully disable security
measures in specific cases.

In addition to these problems, for the training of models, usually datasets are used which
have been generated artificially in a controlled test environment. As a downside of this
approach, it is unclear whether an ML model learns to classify based on characteristics
that are inherent to the attacks that should be detected, or rather learns to classify based
on patterns that were unintentionally created during dataset generation.

For a well-performing network IDS technique it is therefore of utmost importance to
study which features are useful and which patterns the technique looks at to distinguish
attack traffic from normal traffic, and to question if these explanations match with expert
knowledge.

In this section, we train supervised models to detect network attacks. We then add a
backdoor to the models and show that attack detection can efficiently be bypassed if the
attacker had the ability to modify training data. Then we discuss techniques to detect a
backdoor in a trained model. In particular, we show how visualization techniques from
explainable ML can be used to detect backdoors and highlight problems emerging from
the distribution of attack samples in the training dataset.

5.2.1 Experimental Setup

We performed our experiments with an RF and an MLP model and intentionally added
a backdoor to both. In particular, we used the following experimental setup:

Dataset Preprocessing

We used the CIC-IDS-2017 and UNSW-NB15 datasets as introduced in Section 2.7. For
processing the data, we base our analysis on the CAIA [231] feature vector as formulated
in [165], which includes the used protocol, flow duration, packet count and the total
number of transmitted bytes, the minimum, maximum, mean and standard deviation of
packet length and IAT and the number of packets with specific TCP flags set.

All features except protocol and flow duration are evaluated for forward and backward
direction separately. We also include the minimum, maximum and standard deviation
of TTL values in our feature vector as an attractive candidate for exploitation as a
backdoor.

We used go-flows [227] for extracting features from the raw capture files and applied
z-score normalization to process the data. We used 3-fold cross validation to ensure that
our results do not deviate significantly across folds.
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ML Techniques

We used PyTorch [178] to build an MLP. For this we used 5 fully connected layers with
512 neurons each. We applied Rectified Linear Unit (ReLU) activation after each layer
and dropout with a probability of 0.2 and used binary cross entropy as loss function for
training.

In addition to the MLP, we trained an RF classifier to detect attacks in network traffic.
We used the RandomForestClassifier implementation from scikit-learn [179] for
this task and used 100 estimators for training the RF.

The Backdoor

We added a backdoor to our MLP and RF models. Hence, we had to find a pattern usable
as a backdoor in feature vectors. On one hand, this pattern has to be detectable reliably
by the IDS system, on the other hand it must be possible to generate real network traffic
that translates into feature vectors exhibiting this pattern.

In our case, we used the TTL value contained in the IP header of Internet traffic as
channel for signaling the backdoor. The TTL is used for mitigating problems due to
routing loops in IP networks. It is reasonable to assume that the TTL field remains
constant for all packets in one benign traffic flow. This assumption was perfectly reflected
by the examined datasets, as only 965 flows exhibited a non-zero standard deviation for
CIC-IDS-2017 and only 7 flows exhibited a non-zero standard deviation for UNSW-NB15.

Hence, we decided to establish a backdoor in our models by varying the TTL for the
packets in flows of attack traffic. The models would thus learn to treat flows with a
non-zero standard deviation of the TTL value as non-attack traffic.

In particular, we implemented the backdoor by incrementing the TTL of a flow’s first
packet by one if its TTL is smaller than 128 and decrementing it by 1 if is larger. This
results in a tiny standard deviation of the TTL as well as in changed maximum, minimum
and mean.

5.2.2 Performance Results

Table 5.1 shows performance results for the MLP and RF, depicting both detection
performance of normal samples and the efficacy of the backdoor. The models are thus
able to detect the backdoor with high confidence while retaining high attack detection
performance. Our results are consistent with previous work like, e.g., [165].

5.2.3 Identifying Backdoors using Explainability Plots

A number of methods have been proposed recently aiming to visualize and explain a
non-interpretable ML model’s decisions. Applied to the present problem, we can pick up
ideas from PDPs and ALE plots, not only for identifying backdoors in the MuI, but also
for finding wrong decisions it would take due to flawed training data.
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Table 5.1: Detection performance results.

UNSW-NB15 CIC-IDS-2017
RF MLP RF MLP

Accuracy 0.990 0.989 0.997 0.998
Precision 0.854 0.845 0.997 0.999
Recall 0.850 0.829 0.993 0.992
F1 score 0.852 0.837 0.995 0.995
Youden’s J 0.845 0.823 0.992 0.991
Backdoor accuracy 1.000 0.998 1.000 1.000

Backdoors can be identified by computing PDP or ALE plots for the MuI and investigating
if regions exist, for which the MuI behaves counter-intuitive. For our CIC-IDS-2017 MLP
classifier, Figure 5.1 shows the PDP for the TTL value in forward direction, where the
label 1 means classification as attack. We also provide plots for the corresponding models
that were trained without backdoor. The plots are not available in a real situation, but
we provide them here for comparison.

As shown in Figure 5.1, the PDPs for the MLP show a deep notch for certain low values
of stdev(TTL). As discussed above, normal traffic is very unlikely to have deviating TTL
values for different packets. In contrast to Figure 5.1, one would therefore expect this
feature to have a negligible influence on the classification result. Hence, in our case,
existence of a backdoor can be assumed since the PDP plummets to very low values for
a specific value of stdev(TTL) for no apparent reason.

0.25

Figure 5.1: PDPs and ALE plots of the MLP for CIC-IDS-2017. Full range of stdev(TTL)
values on top; stdev(TTL) values from 0 to 5 below.
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Figure 5.2: PDPs and ALE plots for mean(TTL) for the CIC-IDS-2017 RF and MLP
classifiers.

However, inconsistent behavior of the MuI, detected using PDPs or ALE plots, does not
necessarily result from poisoning activity. For example, Figure 5.2 shows the mean(TTL)
feature in forward direction. The models show a clear dependence of the mean TTL
value of incoming packets, which is similarly counter-intuitive as for the feature discussed
above. In our case, this behavior results from the non-equal distribution of TTL values
of attack and non-attack traffic in both the UNSW-NB15 and CIC-IDS-2017 datasets.

Independent of their origin, such patterns might be exploited for masquerading attacks
and thus are clearly unwanted. PDPs and ALE plots therefore provide a convenient
possibility for analyzing ML models for vulnerabilities.

5.2.4 Discussion

Explainability methods that have been proposed for visualizing ML decisions can indeed
be used to analyze behavior of classifiers in the domain of IDSs.

Furthermore, from our experiments, we can make two main recommendations for the
deployment of ML models that have been obtained from a third party. To ensure that
no backdoor is contained in the model, it has to be analyzed carefully for questionable
decisions and potentially unnecessary features. For this purpose, PDPs and ALE plots
are an effective tool. In fact, already throughout the training process explainability plots
constitute a useful tool to ensure that the model is not unintentionally trained to artifacts
the dataset yields.

On the other hand, the implementation of a backdoor as conducted in this research is
only possible when using several features involving the TTL value. Even though it might
seem tempting to provide all possible features to a deep learning or RF classifier and let
it learn the most important ones, this strategy should be avoided.
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5.3 Explaining Classifications on Sequential Data
Notice of adoption from previous publications (Section 5.3)
Parts of the contents of this section have been published in the following paper:

[116] Alexander Hartl, Maximilian Bachl, Joachim Fabini, and Tanja Zseby.
Explainability and adversarial robustness for RNNs. In 2020 IEEE
Sixth International Conference on Big Data Computing Service and
Applications (BigDataService), pages 148–156, New York, NY, USA,
2020. IEEE

Introductory text and experiments and text writing for sections 5.3.1 to 5.3.2 were
joint work with Maximilian Bachl. Remaining text and thereby main academic
contributions outlined in this chapter originate from myself. All authors contributed
in proofreading the manuscript.

Various approaches have been proposed to extract features from flows and then perform
anomaly detection with the extracted flows [165]. Not only features of individual packets
like packet sizes, protocol flags or port numbers are available for deducing such statistical
features, but also features related to the timing of packets. While these approaches
frequently work well, it is problematic that the entire flow has to be received first and only
afterwards anomaly detection is applied, revealing attack flows. Thus, in this section we
consider an IDS that operates on a per-packet basis and decides if a packet is anomalous
based on features that are available even for traffic that is encrypted above the transport
layer, like for example TLS or QUIC. At the same time, an RNN-based IDS has the benefit
of providing any available information to the classifier while avoiding tedious feature
engineering procedures, which derive statistical measures from the sequence of packet
features. The IDS we develop in this section has similar performance to other flow-based
anomaly detection systems but can detect anomalies before the flow terminates.

However, for practical use, high detection accuracy is not enough. With the recent rise
of interest in Adversarial Machine Learning (AML) techniques, also AML for IDSs has
been investigated. For example, [42] investigates remedies for poisoning attacks on IDSs
and [121] investigate adversarial robustness of common network IDSs. In this research,
we work with sequential data and therefore are interested in whether adversarial samples,
i.e. minimally different attack flows that are classified as benign, can be found for our
RNN-based model. This is not a trivially answerable question since adversarial samples
have mostly been analyzed in the context of computer vision. Our scenario significantly
deviates from computer vision because (1) the number of features is significantly smaller
and (2) only certain features can be manipulated if the flow should remain valid.

Surprisingly, it has been confirmed [116, 41] that adversarial samples can be found
even when considering these tight constraints. Due to the threat of adversarial attacks,
but also as a basic requirement for social acceptance of an ML-based system, a crucial
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requirement for ML-based IDSs therefore is that the classifier’s decisions are interpretable
by humans. This recently stirred up increased interest in explainability methods. Also in
this case, common methods are designed to work with images or tabular data, but not
with sequences.

In this section, we attempt to provide a comprehensive discussion of these explainability-
related topics in the context of RNNs. We review methods for evaluating which features
have a significant impact on the classifier’s prediction, both picking up methods that have
been proposed in the literature, extending them for RNNs, and devising new methods.
Astonishingly, feature importance methods reveal that features that are manipulated
for successful adversarial flows, are not even particularly important for the RNN’s
classification outcome. Thus, we propose feature sensitivity methods, which show how
prone a feature is to cause misclassification.

Going further, we investigate which packets have a significant contribution to the classi-
fier’s decision and which values of these features lead to classification as attack. Hence,
we extend existing explainability methods such as PDPs [92] for sequential data.

5.3.1 An RNN-based Classifier

We implemented a three-layer LSTM-based classifier with 512 neurons at each layer.
For a sufficiently large NN, we do not expect these architectural parameters to have a
severe impact on classification accuracy, so we chose these parameters to obtain a good
performance while keeping training duration at an acceptable level.

As the input features we use source port, destination port, protocol identifier, packet
length, IAT to the previous packet in the flow, packet direction (i.e. forward or reverse
path) and all TCP flags (0 if the flow is not TCP). We omitted TTL values, as they are
likely to lead to unwanted prediction behavior [42]. Among the used features, source
port, destination port and protocol identifier are constant throughout the entire flow
while the other features vary. During flow extraction, we used the usual 5-tuple flow key,
which distinguishes flows based on the protocol they use and their source and destination
port and IP address. We use z-score normalization to transform feature values to the
range appropriate for NN training. We ensured that our classifiers do not suffer from
overfitting using a train/test split of 2:1.

For evaluation, we use the CIC-IDS-2017 [203] and UNSW-NB15 [170] datasets, which we
have introduced in Section 2.7. Table 5.2 shows the achieved classification performance
when evaluating metrics per packet and per flow and includes performance results for an
MLP classifier from [42] for comparison. As depicted, our RNN-based classifiers achieve
an accuracy that is similar to previous work based on these datasets [165, 42]. However,
unlike these classifiers, our recurrent classifier has the advantage of being able to detect
attacks already before the attack flows terminate.
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Table 5.2: Performance metrics per packet and per flow. MLP values from [42] are
presented for comparison.

CIC-IDS-2017 UNSW-NB15
Packet Flow MLP Packet Flow MLP

Accuracy 99.1% 99.7% 99.8% 99.5% 98.3% 98.9%
Precision 97.0% 99.7% 99.9% 83.4% 78.6% 84.5%
Recall 97.8% 99.1% 99.2% 87.6% 72.6% 82.9%
F1 97.4% 99.4% 99.5% 85.5% 75.5% 83.7%
Youden’s J 97.2% 99.0% 99.1% 87.3% 71.9% 82.3%

5.3.2 Adversarial Attacks

We now outline how AML can be applied to our RNN while meeting real-world constraints
for observable features. Our adopted technique has previously been described in [116, 41]
and is explained below.

A network packet contains significantly less features than, e.g., an image and, furthermore,
most features such as TCP flags cannot be easily manipulated, as their manipulation
might violate the protocol specifications and thus cause communication to fail. We
identify the packet length and the IAT as features that are most likely to be exploited
and thus choose them to be modified by the adversary. Nevertheless, even these features
cannot be manipulated due to problem-specific constraints:

• Only packets can be manipulated that are transmitted by the attacker, except for
botnet and backdoor traffic, which is entirely controlled by an attacker and thus only
packets travelling in one direction can be manipulated.

• Packets must not be smaller than initially, as otherwise less information could be
transmitted.

• IATs must not decrease, as otherwise the physical speed of data transmission can be
violated in some cases. An in-depth analysis of cases in which reduction of IATs is
legitimate is complex, so we generally disallowed IAT reductions.

We implemented the Carlini-Wagner method (CW) [65], performing gradient descent on
the optimization objective

d(X, X̃) + κmax(Z(X̃), δ). (5.1)

Here, d(·) is a distance metric and κ ∈ R+ is a parameter governing the tradeoff achieved
between attack success and distance from the original flow. Furthermore, Z(·) denotes
the NN’s logit output, X denotes the original flow and X̃ the adversarial flow optimized
by CW.
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δ ∈ R is a parameter that determines how far an adversary wants to exceed the decision
boundary. In the original publication δ = 0, meaning that the network’s decision for
adversarial samples is just between attack and benign traffic. In the present context, we
need to make sure that the classifier’s prediction would actually be benign, even though
a certain level of noise will be added to IATs due to the network between attacker and
victim. Hence, we introduced δ = −0.2, corresponding to a prediction confidence of 55%
for the sample to be benign after the sigmoid activation function.

We used L1 as distance metric, as we consider L1 distance to represent practically relevant
differences of network flows best. We used Projected Gradient Descent (PGD) for meeting
the real-world constraints discussed above.

Using this technique, similar to [116, 41] we were able to successfully create adversarial
samples for our RNN classifiers.

5.3.3 Explaining Predictions of RNNs

Having verified the effectiveness of AML for our RNNs, we now investigate how the
classifiers come to a decision. From a naive perspective, one might be tempted to reuse
existing explainability methods for RNNs by considering a flow the sum of its packet
features. We identify several difficulties, which occur when trying to explain decisions
made by RNNs.

• Feature quantity. The number of features fed into an RNN is the number of
packet features times the length of the flow. For long flows, the total number of
inputs can become very large.

• Variable sequence lengths. The length of different flows might differ tremen-
dously. Hence, features at one particular time step might be important for the
network’s outcome for one flow, but not even exist for other flows.

• Lack of a distance measure. However, even if we restricted the analysis to flows
of a constant length, a flow is different from the plain concatenation of its packet
features. For example, in a sentence, which is sequence of words, parts can be
rearranged, giving a different sequence with possibly the exact same meaning.

• Multiple prediction outputs. Often an RNN produces an output at each time
step. When applying explainability methods, the question arises which output to
consider for the method. The natural choice is to base the methods on the prediction
output that occurs at the same time step as the feature under investigation: This
approach is less complex compared to considering also features of all earlier time
steps. In addition, we expect the current prediction outcome to more dependent on
the current feature, compared to a feature from many steps ago. However, due to
the complex decision processes of deep NNs, this is not always true and a feature
might influence a decision many time steps later.
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Table 5.3: Accuracy drop for input perturbation and feature dropout.

(a) Input perturbation

Feature Accuracy drop

Protocol 0.207
Packet Length 0.165
SYN Flag 0.099
ACK Flag 0.084
Direction 0.073
Destination port 0.071
Source port 0.060
RST Flag 0.057
PSH Flag 0.056
Interarrival time 0.024
FIN Flag 0.012
URG Flag 0
ECE Flag 0
CWR Flag 0
NS Flag 0

(b) Feature dropout

Feature Accuracy drop

Destination port 0.025
Source port 0.003
RST Flag 0.001
ACK Flag 0.001
Protocol 0.001
Packet Length 0.001
Direction 0.001
SYN Flag 0
Interarrival time 0
FIN Flag 0
ECE Flag 0
URG Flag 0
CWR Flag 0
NS Flag 0
PSH Flag 0

Many explainability methods proposed recently are local and thus provide explanations
for a particular data sample [202, 158, 74, 188]. However, for the particular problem of
network traffic, due to the high number of flows and the characteristics of data, analyzing
individual samples is of low interest. Explainability methods presented in this thesis
therefore aim to understand a model by analyzing which features are important, at which
time step they are important and which feature values lead to classification as attack.

Feature Importance Metrics

As a first step to understanding the NN’s decisions, we estimate how important individual
features are for the model’s predictions. When investigating an ML classifier, it is natural
to ask which inputs have a large influence on the classifier’s prediction. We feel the need
to distinguish metrics for this purpose based on their main aim:

A large amount of research has been spent on finding feature importance metrics, which
allow the selection of high-importance features, providing a reasonably good classification
performance while resulting in a lightweight classifier.

Conversely, both adversarial ML and explainable ML bring up the question to what
extent individual features are able to change the prediction outcome. While appearing
similar, traditional feature importance can yield markedly wrong results for this case. To
distinguish, we propose the term feature sensitivity for such metrics. To analyze features,
we use the following approaches:
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Neural Network Weights In previous works [177, 176], a simple method for deter-
mining feature importance in NNs has been summing up NN weights leading from a
certain input to the prediction outcome. The weights method can be considered for
both feature importance and feature sensitivity, however, clearly, especially in the case of
complex network architectures, this method is likely to provide wrong results. Hence, we
provide results for the weights method mainly for comparison. Note that an LSTM cell
alone has four weights leading from one input to an output.

Input Perturbation The most commonly deployed feature importance techniques,
used by practitioners for RNNs [213] and deep learning [169, 212, 177], are based on
adding noise to a particular feature and evaluating the drop in accuracy that occurs. We
argue that it is hard to determine the “correct” intensity of noise to add. Hence, we
sample the value for a feature from the distribution of all values of this feature in the
dataset. This makes the method non-parametric since the noise distribution does not
need to be chosen. We ensured that features that stay constant for a flow, i.e. source port,
destination port and protocol, also stay constant throughout the flow when randomizing
the feature.

Feature Dropout While the perturbation method is convenient since it is easy to
implement and understand, we argue that it has some shortcomings: The RNN was never
trained for dealing with “garbage” values that the randomization creates. For example,
completely unrealistic feature combinations could occur that were never observed during
training. Furthermore, sequences of features could occur that cannot occur in reality.

To evaluate true feature importance, we thus develop a more sound method called
feature dropout: When training a model, for each sample, we leave out each feature with
independent probability 1

n , n ∈ N being the number of features, by setting it to zero. On
average, one feature is zeroed out but it is also possible that none or more than one are
left out. This procedure is equivalent to using dropout [211] with probability 1

n before
the first layer.

An important implementation detail is that for each feature we add another input that
is 1 if the feature is suppressed and 0 otherwise. This is necessary for the NN to be
able to distinguish between a feature missing and a feature genuinely being zero. The
overall outcome is a classifier being able to deal with missing features. The results
in Table 5.3 show that, unlike input perturbation, feature dropout does not vastly
overestimate features’ importance. With feature dropout, it becomes apparent that only
very few features actually contain unique information, affecting accuracy when left out:
the destination port and the source port.

A model trained with feature dropout typically yields slightly lower accuracy than a
regularly trained model, even if no features are left out (flow accuracy of 99.43% vs.
99.65%). We thus recommend training two models: One regular one and one with feature
dropout to use for the feature importance.
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Figure 5.3: Feature importance metrics for the flow prediction for CIC-IDS-2017 (left
side) and UNSW-NB15 (right side).

Another method that uses dropout for feature importance is [66], applying a technique
called Variational Dropout to learn the optimal dropout rate for each feature. It tries to
leave out as many features as possible and at the same time keep accuracy high. Thus,
important features are going to be left out less often and one can then extract the dropout
probabilities for each feature and assess their significance based on them. While this
method looks seemingly related to feature dropout, it is significantly more complex and
does not aim to show the accuracy drop that occurs when omitting a feature but instead
returns a unique feature importance value between 0 and 1.

For feature dropout, it can also happen that several features are left out for a sample
and so feature dropout can also be used to analyze the effect of multiple features missing
and can thus show possibly correlated features or – more general – features that contain
common information, relevant for the classification task: For features i, j we define

Scorei,j = Accbase −Acc−i,j
(Accbase −Acc−i) + (Accbase −Acc−j)

, (5.2)

where Accbase denotes the accuracy of the classifier with all features included, with Acc−i
the accuracy if feature i is omitted and with Acci,j the accuracy if both features i and
j are omitted. Assuming a non-negative accuracy drop when omitting a feature, the
resulting score is ≥ 0.5. The higher it is, the larger the information that both features
share.

For instance, the obtained score between RST and the protocol identifier is 8.5, which is
the highest value we observed for all pairs of features. While this may be unintuitive at
the first glance, it likely stems from the fact that if the protocol identifier (TCP or UDP)
is missing, then RST being 1 at some point indicates that the flow is TCP.

Feature dropout might constitute a building block for methods based on Shapley values
[202] like KernelSHAP [158].

Mutual Information Input perturbation and feature dropout mainly address feature
importance. For example, assuming that the test dataset is representative for production
use, for feature importance it is reasonable to equate the distribution for perturbing a

117



5. Explainability for IDSs using Supervised ML

0.0 0.5 1.0
x

0.0
0.5
1.0

f(A
,x

)

0.0 0.5 1.0
x

0.0
0.5
1.0

f(A
,x

)

Figure 5.4: Two distributions yielding an identical accuracy drop.

feature with the feature distribution itself. However, when evaluating feature sensitivity,
e.g. for analyzing potential for adversarial samples, the attacker is not limited by this
distribution and frequently is able to choose arbitrary values in the feature space.

Furthermore, we argue that accuracy drop depicts an importance measure that might
be misleading for evaluating feature sensitivity. To see this, let f(A, x) denote the joint
probability for classification as attack and a feature value x. Accuracy then is

∫
R f(A, x)dx

for attacks and 1 −
∫
R f(A, x)dx for benign traffic. Figure 5.4 shows two different

distributions yielding the same accuracy, but clearly the right-side distribution has a
larger influence on the prediction, as in the right-side case the prediction deterministically
depends on the feature value.

To capture such dependencies, we propose to use mutual information to determine feature
sensitivity. Mutual Information between two random variables X,Y is defined as

IX,Y = E
{

log
(
fX,Y (x, y)
fX(x)fY (y)

)}
, (5.3)

with fX(x), fY (y) and fX,Y (x, y) denoting the distribution of X,Y and their joint dis-
tribution, respectively. To obtain feature sensitivity, we compute mutual information
between an input variable and the prediction output for one flow at one particular time
step, averaging over the result for the test set.

Comparison Figure 5.3 shows the results, which match largely with domain-specific
expectations for classifying network flows. In particular, rarely used TCP flags like NS
or URG are unimportant for the classifier. On the other hand, destination port and
protocol are essential for characterizing flows by hinting at the type of traffic. IAT and
packet length are important for estimating the amount of transferred information and
several flags hint at certain attacks like Denial-of-Service (DoS) attacks.

The weights method is able to reveal features with a very low importance to a certain
degree, but disagrees with the other methods to a large extent. Less anticipated, however,
also input perturbation does not exhibit a considerable correlation with feature dropout.
Considering its functioning of completely removing individual features, feature dropout is
the most reliable method for evaluating importance for removing features. It is remarkable
that none of the other methods is able to depict the distinct peak of importance for the
destination port visible for feature dropout in Figure 5.3 and Table 5.3.
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Figure 5.5: PD plot for the source and destination port features.

It is not surprising that mutual information disagrees with feature dropout, since both their
aim and their functioning are substantially different. For example, mutual information
shows that the protocol field can have a substantial impact on the classification even
though an identical accuracy can be achieved when omitting it.

Metrics for UNSW-NB15 differ substantially from CIC-IDS-2017. However, due to the
large number of different network attacks and network configurations, it is easily possible
that relevant features are very different. We consider the question of model transferability
of substantial importance for IDS applications, but out of scope for the present research.

Explainability Plots

Knowing which features to investigate, it is important to analyze which feature values
lead to classification as attack. In literature, the use of PDPs has been proposed [92].
To inspect attack types in detail, in this research we use a conditional form of the PDP.
If X ∈ Rn denotes a random vector drawn from feature space, f(X) ∈ [0, 1] the NN’s
prediction and c the attack type, we define the conditional PDP for feature i as

PDPc,i(w) = EX|C
(
f (X1, . . . , Xi−1, w,Xi+1, . . . Xn) |c

)
, (5.4)

empirically approximating the conditional distribution by the observed subset that belongs
to a certain attack type.

By using a classical PDP we would likely lose information due to the averaging over
very different types of traffic. However, for network traffic in particular, investigating
each sample individually is not possible. Hence, the conditional PDP provides the ideal
compromise for our application.

Due to the use of a 5-tuple flow key, port numbers and the protocol identifier are constant
for all packets in one flow. Hence, we can consider the RNN a regular classifier and reuse
PDPs, which have been proposed for non-recurrent classification methods, by plotting
the RNN’s flow prediction outcome over one of these features. The results show that for
some attack types the port numbers play an important role. When looking at the PDP
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Figure 5.6: Classifier confidence per time step for CIC-IDS-2017. For the majority of
attack types, confidence increases in the first few steps and then stays almost constant at
1.

for benign traffic samples in Figure 5.5, it becomes apparent that traffic destined to a
high destination port is generally indicative of an attack. We argue that this is because
most services that regular users use have low port numbers.

Plots for Sequences

Intuitively, features at the beginning of a flow should be the most important, while the
classifier’s predictions should not vary significantly anymore, as soon as it has come to a
decision.

To evaluate this hypothesis, Figure 5.6 depicts the classifier’s prediction confidence for
each time step, along with the number of samples having at least this length, which
were used for evaluating the figure. While at the first couple of packets the confidence is
not very high, towards the end of the flow it reaches values close to 1 and stays there.
Hence, not only is the classifier able to make a reasonable classification after just a few
packets, the figure also suggests that indeed later packets have a negligible influence on
the prediction.

For investigating in more detail how features influence the prediction outcome, we extend
PDPs to the sequential setting. Denoting as X = {X1, . . . ,Xm} the series of packet
features Xt ∈ Rn and ht(X) the network’s hidden state after time step t, we define the
sequential PDP as

seqPDPc,i(t, w) = (5.5)

EX|C
(
f
(
ht−1(X), Xt

1, . . . , X
t
i−1, w,X

t
i+1, . . . X

t
n

)
|c
)
.

Figure 5.7 shows an example together with the mean values for both unmodified samples
and adversarial samples. Also in this figure, we notice that mainly the first few packets
are able to influence the prediction outcome and modifying features at a later time
step does not change its confidence any longer. In many cases, the adversarial sample
generation indeed moves packet features to areas where the network is less likely to be
classified as attacks, confirming the effectiveness of PDPs. In other cases, however, we
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Figure 5.7: Exemplary sequential PD plot and adversarial flows for the DoS Slowloris
attack in CIC-IDS-2017. The lines show the feature’s mean values. The shaded region
shows the change in confidence that occurs when the feature is varied.

did not observe an agreement between PDP and adversarial modifications, hinting at
dependencies that cannot be presented by PDPs. Since the IAT is undefined for the
first packet, we always set it to 0. Still, interestingly, the plot shows that the classifier
considers packets with a higher IAT to be more likely to be attacks than those with a
smaller one.

Finally, we investigated whether our classification task involves recognizing complex
patterns in the feature space. As example, Figure 5.8 shows that attack types indeed have
a characteristic pattern in which they send packets by which they are easily recognizable.
Other attack families similarly show characteristic patterns.

5.3.4 Discussion

We have implemented an RNN-based IDS and showed that it is able to detect attacks
already at an early point in a flow’s lifetime while being able to achieve comparable
classification accuracy. The problem of adversarial examples is highly relevant in the
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Figure 5.8: IAT and packet length for SSH brute-force attacks in CIC-IDS-2017.
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context of IDSs, underlining the question whether the susceptibility to adversarial
examples can be analyzed using explainability methods.

Indeed, our sequential PDPs showed that in some cases nearby regions of classification
as normal are actively exploited by the adversarial example generation process. Owing
to the high-dimensionality of the investigated data, however, in other cases we could
not identify a clear relation between the behavior indicated by PDPs and the generated
adversarial examples.

As our systematic review of problems related to the interpretation of an RNN-based NN
revealed, indeed there are various challenges when it comes to understanding the decision
process of such kinds of classifiers. Our conclusion for use in practice, in particular for
when security and protection against adversarial ML are of crucial importance, is that
other classifiers that are better interpretable are a better choice in many cases.

On the other hand, if RNN-based NNs should be used to profit from their benefits, we
recommend analyzing the model to be used using explainability methods before taking it
to operation. A systematic way to approach this task is to first use feature importance or
sensitivity methods to analyze which features influence the prediction outcome or, on the
other hand, which features might even be omitted. As a second step, it is then advisable
to perform a more in-depth analysis using visualization techniques as outlined above.
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CHAPTER 6
Attacks on High-Security

Infrastructures

Notice of adoption from previous publications (Chapter 6)
Parts of the contents of this chapter have been published in the following paper:

[118] Alexander Hartl, Joachim Fabini, Christoph Roschger, Peter Eder-Neuhauser,
Marco Petrovic, Roman Tobler, and Tanja Zseby. Subverting counter
mode encryption for hidden communication in high-security infrastruc-
tures. In The 16th International Conference on Availability, Reliability
and Security, pages 1–11, 2021

I performed development of the theoretic foundations, development and academic
writing by myself. Preparation of figures was performed in collaboration with Joachimi
Fabini. All authors contributed in preliminary discussions on attack design and in
proofreading of the manuscript.

Chapter 4 showed us that even when using comprehensive encryption, an attack surface
remains that might allow analyzing captured network traffic based on observed traffic
patterns. However, in RQ4 we went one step further and asked whether the use of
encryption might even pose security risks itself. To complete our discussion on RQ4,
in this chapter we have a look at a certain attack type where – despite the undisputed
security benefits it yields – encryption indeed also introduces additional risks.

Modern communication networks have to be defended against a wide range of attacks.
In particular for critical infrastructures, where networks have to meet high demands
in security, attacks in many cases are highly sophisticated. While attacks that incur
unusual network communication are detectable using methods highlighted in the previous
chapters, it is illusive to believe that any possible network attack can be detected. To
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defend against sophisticated attacks, it is thus crucial to implement security measures also
on the organizational layer of a company, e.g., by educating employees on security-related
topics. To motivate these claims, in this chapter we construct an attack whose detection
is computationally infeasible despite being able to observe the relevant traffic. This
attack we outline in this chapter implements network steganography by using a subliminal
channel.

The concept of subliminal channels was introduced as early as 1978 and first described
publicly by Simmons in 1984 [210, 207]. Simmons envisioned two prisoners who are
allowed to communicate with each other in the form of messages. Since the prison warden
wants to prevent the prisoners from coordinating an escape plan, he only relays messages
that are unencrypted so that he can read them himself. The prisoners, on the other
hand, fear that the warden will forge each other’s messages, so they insist on using
signatures to authenticate the communications. Using this scenario, Simmons showed
that information can be embedded in a signature that does not interfere with successful
signature verification.

So far, the existence of subliminal channels has been shown for many traditional signature
schemes, such as DSA ([209], [78]), ECDSA ([55, 75, 137]), RSA ([244, 53, 189]), or Rabin
signatures ([210, 184]). Finding a method to use a signature scheme provably without
the possibility of a subliminal channel usually turns out to be extremely difficult and
requires the use of a central authority that can monitor the communication, which is
hardly feasible for many practical scenarios [115].

Unlike the majority of work on subliminal channels, we here investigate a symmetric
cipher for the possibility of covert communication. In more detail, we exploit the Message
Authentication Code (MAC) of AES-GCM-encrypted data to carry information. While
the possibility of exploitation of a MAC as carrier of covert information is not particularly
interesting when using the cipher in a straightforward way, we here investigate it in the
context of a network architecture that is explicitly designed to prevent cryptographic at-
tacks by offloading cryptographic operations to a separate network device with paramount
security properties. Although intuition suggests that the alleged paramount security of
such an architecture prohibits the exploitation of the MAC, we show that shortcomings
of GCM indeed allow use as a subliminal channel.

6.1 Related Work and State of the Art
GCM was proposed by McGrew and Viega [162] to overcome performance restrictions
in processing rates of used encryption modes while providing provable security. The
authors included a security proof in their original publication [162], but Iwata et al. [135]
later uncovered a flaw in the security proof. Even though further security issues were
discovered for GCM [193, 112, 138, 84, 104], GCM is generally being considered secure
when used correctly. In particular, when showing that the original security proof is faulty,
Iwata et al. additionally provided a new proof, which, however, has larger bounds. Also
multi user security of GCM has been shown [46, 123].
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In the present context, Joux’s attack [138], termed the “forbidden attack”, is noteworthy.
The attack’s name stems from the fact that it relies on Initialization Vectors (IVs) being
reused, which is a scenario that is explicitly excluded in security proofs. In this case,
security of GCM breaks down completely and universal forgery becomes possible. Later,
Böck et al. [61] performed a scan of the Internet, showing that, at the time of their
studies, a notable amount of TLS-protected webservers suffered from implementation
issues, which led to IV reuse.

In this thesis, we are interested in exploiting GCM’s properties for hidden communication.
The exploitation of cryptography for hidden communication was originally introduced
by Simmons [207, 208], who envisioned prisoners who communicate clandestinely using
authentication data, and introduced the term “subliminal channel” for hiding information
exploiting cryptographic algorithms. To date, subliminal channels have been found
in various digital signature schemes [209, 56, 54, 114]. The existence of subliminal
channels has also been shown in the field of post-quantum cryptography, where principles
are used that are often fundamentally different from more traditional cryptography
[115, 93, 149]. The field was extended by Young and Yung [238, 239], terming the field
“kleptography” and introducing Secretly Embedded Trapdoor with Universal Protection
(SETUP) attacks.

More recently, approaches in the spirit of subliminal channels and SETUP attacks have
been investigated under the name Algorithm Substitution Attack (ASA) [47] and it
has been investigated how randomness used for symmetric encryption can be used for
leaking information [47, 48, 36]. For example, Armour and Poettering [36] showed how
Authenticated Encryption with Associated Data (AEAD) encryption can be used to
leak information by raising spurious authentication failures, encoding information in the
resulting message retransmission pattern. Schneier et al. [199] survey various methods
for weakening cryptographic algorithms.

6.2 Covert Communication using AES-GCM

In high-security infrastructures, use of cryptographic methods is ubiquitous to ensure
confidentiality, integrity and authenticity of transmitted data. The most frequent re-
quirement is to provide both, message confidentiality and authenticity, which has led to
the development of AEAD encryption modes. An AEAD algorithm performs encryp-
tion of the data and additionally computes an authentication tag, thus providing both,
confidentiality and authenticity.

As of today, the most popular method to perform authenticated encryption is to use
GCM, utilizing AES as underlying block cipher.

Additional security improvements can result from restricting involved parties’ direct access
to secret values. Tasks like encryption, decryption and authentication can be offloaded
to a dedicated device like, e.g., a separate network server or a dedicated hardware
module. In this thesis, we denote such devices as Cryptographic Key Management
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Devices (CKMDs). Secret keys, which are considered among the most valuable pieces
of information to be kept confidential, can thus be stored in a single location that is
equipped with paramount security features. Architectures deploying CKMDs are often
used within critical infrastructures, aiming to meet highest demands in security and
privacy.

When designing a high-security infrastructure it thus seems natural to combine both,
AEAD encryption and the use of CKMDs. However, as we show in this chapter, the
straightforward use of counter mode encryption such as GCM, CCM, CWC, EAX or the
plain Counter Mode (CTR) in such a scenario opens doors for attack options that allow
the circumvention of the CKMD in encryption and decryption tasks, cancelling a large
part of benefits the CKMD provides.

For example, since a message’s authentication tag does not carry actual information, it
might be exploited by malware to carry hidden information, which can pose a major threat
in a critical infrastructure, as it evades detection possibilities by network monitoring
software and IDSs. When using a CKMD, it seems easy to prevent this communication
possibility by denying decryption on the CKMD for messages with invalid authentication
information. We show that, when using counter mode encryption like GCM, attack
possibilities can emerge that allow circumvention of the CKMD’s decryption interface in
both decryption and authenticity verification, thus allowing the authentication tag to be
used as a very attractive subliminal channel. Due to its immense practical relevance, we
focus on GCM in this work.

Hence, in this chapter, we review attack possibilities that emerge from using GCM in
conjunction with a CKMD. We analyze methods for exploiting the authentication tag for
the establishment of a subliminal channel, which yields particularly attractive properties
for an attacker with respect to hidden communication. To high-security infrastructures,
this subliminal channel therefore poses a major risk. We additionally discuss approaches
to remedying the risk originating from the described scenarios, concluding that the use of
a different operational mode like GCM-SIV or of random, CKMD-generated Initialization
Vectors (IVs) are the best approaches to avoiding attack possibilities.

Our Contributions

With our findings in this chapter, we aim to raise awareness for a false sense of security
arising when combining counter mode encryption like GCM with architectural design
deploying CKMDs. This finding is of particular significance, because both, GCM and the
strategy of offloading cryptographic tasks to CKMDs are known to provide high security,
and hence, are likely to be used in critical infrastructures where the existence of hidden
communication facilities can be detrimental for privacy, security or even safety.

In this case, the CKMD seems to provide means for restricting the possibilities for crypto-
graphic operations that can be performed. As we will highlight presently, however, such
restrictions can easily be bypassed in many cases when using counter mode encryption.
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We discuss in detail a scenario where the CKMD allows both encryption and decryption
of arbitrary messages and investigate whether the authentication tag of GCM can be
abused for hidden communication while leaving the actual communication operational.
Intuitively, a CKMD would be expected to insist on a correct authentication tag for
performing decryption, leaving no space for embedding hidden information. We show
that this intuition is misleading and that it is indeed possible to perform decryption
despite a manipulated authentication tag. To demonstrate that our used scenarios are
relevant in practice, we describe an exemplary scenario in the field of the Industrial
Internet of Things (IIoT) and show that the subliminal channel can pose a major risk,
while most known covert and subliminal channels can easily be prevented.

GCM is used in various protocols, e.g., in TLS [196, 186], IPsec [222], MACsec [14]
and SSH [134]. Due to its immense practical relevance, we thus focus on GCM in this
thesis. However, while our technique for hidden communication seems to be very specific
for GCM, in fact also other counter encryption modes like CCM [229], CWC [145] and
EAX [45] follow an architectural design that allows applying techniques as described
here for circumventing CKMDs to hide information in an authentication tag. We also
provide several reasons for why, assuming a CKMD is deployed, it is likely that it is
deployed in a way that allows attacks as described by us. Furthermore, our concept is
generic in the sense that the sender of hidden information does not have to be co-located
with the sender of overt communication, but instead can be located on any node on the
transmission path that is able to modify the encrypted message. This property allows
various scenarios for exploitation by an attacker.

To provide guidelines for protocol engineering, we finally discuss several approaches
to mitigating attack possibilities. Beside the use of a different mode of operation like
GCM-SIV [105], the most potent approach to avoid attack possibilities described in this
thesis is to generate the IVs on the CKMD, even if the IVs have to be chosen at random
in this case due to limited capabilities of a CKMD. This is particularly interesting, as it
has been shown previously that the use of random IVs instead of counting IVs increases
susceptibility for hidden communication [47].

6.2.1 Offloading Cryptographic Tasks

In many architectures, cryptographic operations are offloaded to a specific device, in this
thesis referred to as CKMD. We introduce the term CKMD as an abstract term, which
in practice occurs in different instantiations. In particular, a CKMD might be

• a dedicated network server, which performs, e.g., encryption, decryption or signature
creation tasks for other network participants.

• a Trusted Platform Module (TPM), i.e. a dedicated device soldered on computers’
mainboards to provide a secure key storage for cryptographic tasks.

• a Smart Card, functioning as portable security token.
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Figure 6.1: The GCM encryption process for two blocks of encrypted data and one block
of additional authenticated data.

The main reason for deploying a CKMD is to provide means to store and encapsulate
cryptographic key material in a highly secure manner and restrict access to cryptographic
functions using it to a well-defined, security and privacy-preserving interface. In particular,
often special hardware features are used to provide a secure storage area shielding
keys from unauthorized access, possibly even despite physical access. A CKMD might
additionally be equipped with special hardware for performing cryptographic tasks, like,
e.g., a good source of randomness or hardware support for cryptographic algorithms.

Furthermore, a CKMD might be used to restrict the usage of cryptographic keys or
monitor how they are used as well as the frequency of usage. For example, a CKMD
might permit data to be encrypted, but prohibit the decryption of data, even though a
symmetric key is used. However, as we show in the following, possibilities for restricting
usage might be easily bypassed when using an operational mode like GCM.

6.2.2 GCM Encryption

Frequently it is necessary to both encrypt and authenticate transmitted messages. En-
cryption modes that provide both functionalities are known as AEAD. A very popular
AEAD encryption mode is GCM. We summarize GCM encryption in this section.

128



6.2. Covert Communication using AES-GCM

Encryption and Decryption

When processing 128-bit plaintext blocks Pi with 1 ≤ i ≤ n with a user-provided IV, GCM
produces ciphertext blocks Ci and an authentication tag T . The encryption operation of
GCM is defined by the following set of equations [162]:

H = E(K, 0128)

Y0 =
{

IV|031|1 if len(IV) = 96
GHASH(H, {}, IV) otherwise

Yi = inc(Yi−1) ∀ i = 1, . . . , n
Ci = Pi ⊕ E(K,Yi) ∀ i = 1, . . . , n− 1
C∗
n = P ∗

n ⊕ (E(K,Yn)[ : len(P ∗
n)])

T = (GHASH(H,A,C)⊕ E(K,Y0))[ : LT ]

Here, E(·) denotes encryption using the underlying block cipher (e.g. AES [7]), K denotes
the symmetric key used for encryption, ⊕ denotes the Exclusive Or (XOR) operation or,
equivalently, addition in GF(2128) and LT denotes the desired length of the authentication
tag T in bits. Furthermore, we denote by x[ : N ] the N most significant bits of x and by
x[N : ] the N least significant bits of x. len(·) returns its argument’s length in bits and
inc(·) returns its argument incremented by one in big-endian representation.

The function GHASH() is obtained from Xi defined according to the equations [162]

Xi =



0128 ∀ i = 0
H · (Xi−1 ⊕Ai) ∀ i = 1, . . . ,m− 1
H · (Xi−1 ⊕ (A∗

m|0128−len(A∗
m))) ∀ i = m

H · (Xi−1 ⊕ Ci−m) ∀ i = m+ 1, . . . ,m+ n− 1
H · (Xi−1 ⊕ (C∗

n|0128−len(C∗
n))) ∀ i = m+ n

H · (Xi−1 ⊕ (len(A)|len(C))) ∀ i = m+ n+ 1,

where GHASH(H,A,C) = Xm+n+1. Here, · denotes multiplication in GF(2128) and Ai
denote 128-bit blocks of additional authenticated data with 1 ≤ i ≤ m. The encryption
operation is illustrated in Figure 6.1. The transmitted message then consists of the
ciphertext blocks Ci and the authentication tag T .

Hence, similar to stream ciphers, encryption is done by performing an XOR operation
of the plaintext with the block cipher’s output. Decryption can be performed by again
performing an XOR operation with the ciphertext, eventually allowing computation of
the authentication tag similar to the encryption operation.

AES-GCM is a very popular cipher. For example, it is used in TLS [196, 186], IPsec [222],
MACsec [14] and SSH [134]. In TLS version 1.3 AES-GCM is the only cipher that has
to be implemented by standard-compliant implementations [186].
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Reasons for the widespread use of AES-GCM boil down to the reasons that motivated the
development of GCM in the first place. In particular, due to the way GCM is engineered,
encryption and decryption are parallelizable and can be efficiently implemented in
hardware and software [162, 163], thus allowing vast amounts of data to be processed
and deployed in high rates. The key stream used for encryption and decryption can be
precomputed in advance, which constitutes a convenient feature for many applications.
Furthermore, GCM is provably secure [135] and was designed to be free of patents [162].

IV Selection

As will become apparent later, it is of utmost importance to avoid encrypting distinct
messages with the same IV. In general, IVs can be chosen randomly or deterministically
by incrementing the IV for each processed message by one. For example, the NIST
recommendation [77] allows the following methods for creating IVs:

For deterministic construction, [77] divides the IV field into two subfields, the fixed field
and the invocation field. The fixed field identifies the context for the encryption, so that,
e.g., for each device a unique value is chosen. For a specific value of the fixed field, the
invocation field is then simply incremented for each processed message or generated using
a linear feedback shift register.

For Random Bit Generator (RBG)-based construction, a random IV is generated for
each processed message. If the IV is chosen at random, the uniqueness of occurrences
of IV values cannot be guaranteed. Hence, [77] defines an upper limit of 2−32 for the
probability of ever assigning the same IV to distinct messages, thus limiting the number
of processed messages with the same key. For example, for an IV length of 96 bits, up to
232 messages can be processed with the same key without violating the requirement.

The benefit of RBG-based construction is to avoid having to keep a state for the
encryption operation and the risks of flawed state keeping. However, for RBG-based
construction only a probabilistic statement can be made for the reoccurrence of IVs.
It is also noteworthy that for the same number of processed messages, the IV needs
to be considerably longer than for deterministic construction. Furthermore, if both
sender and receiver can be constructed stateful, IV values do not even need to be
transmitted for deterministic construction, as the receiver can construct them on his
own. Furthermore, the deterministic construction has been argued to reduce facilities for
hidden communication [47].

For these reasons, deterministic construction becomes increasingly popular. For example,
in IPsec [222] and TLS version 1.2 [196] IVs are transmitted with each message, leaving
selection of suitable values to the implementation, but suggesting simply using a counter.
In TLS version 1.3 [186] and SSH [134], IVs are no longer transmitted, but implicitly
computed based on a counter.
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Figure 6.2: Normal device communication when using CKMDs.

6.2.3 CKMD Architectures and Counter Mode Encryption

As described in the previous Section 6.2.2, IV selection frequently takes place determinis-
tically by incrementing a counter for each processed message. When deploying a CKMD,
the question arises whether to implement this counting procedure on the CKMD itself,
or rather on the requesting device, transmitting it to the CKMD within the encryption
request.

We argue that in most practical scenarios the counter indeed is implemented on the
requesting device for reasons of robustness, cost, simplicity and hardware design. On the
one hand, CKMDs in many cases are low-cost devices, where state keeping is difficult. On
the other hand, even if state keeping is possible, robustness of the communication might
be at stake or would at least require additional complexity when computing deterministic
IVs on the CKMD. For example, if the connection between requestor and CKMD is
unreliable, the delivery of an encryption response might fail. In this case, if the state
on the CKMD has been updated anyhow, a wrong IV would be the consequence when
rerequesting encryption, leading to failing decryption if the IV is computed implicitly on
the receiver side.

We thus argue that in practice a reasonable scenario is that the IV is chosen by the
requestor and submitted to the CKMD for each message, leaving the requestor full control
over which IV is used. However, if the requestor is in full control about the used IVs,
it can perform several operations described in this section, which are usually implicitly
considered impossible.

Decrypting Messages

A CKMD might allow the encryption of messages, but prohibit the decryption of
messages. If counter mode encryption modes are used, such constraints are elusive. Since
counter mode encryption modes function like stream ciphers with respect to encryption
and decryption, both encryption and decryption proceed by performing an XOR with
a key stream obtained from the underlying block cipher. Hence, decryption of an
encrypted message Ci can be performed by instead requesting encryption with the same
IV, interpreting the returned ciphertext as decrypted plaintext.
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However, the CKMD might monitor the messages to be encrypted and enforce a certain
message syntax and semantics. This check can be circumvented as well by requesting the
encryption of an arbitrary, syntactically valid, message Ri with the same IV, resulting
in the ciphertext CR,i. Decryption of the original message can then be performed by
computing the XOR Pi = Ci ⊕Ri ⊕ CR,i.

This attack strategy might also be used for performing decryption independent of the
authenticity of the message. If the CKMD determines that an encrypted message’s
authentication tag is wrong, it usually not only reports the failing authenticity check, but
also denies decryption of the message. In Section 6.2.4, we will make use of this attack
to decrypt messages while exploiting the authentication tag to carry hidden information.

The attack scenario described in this section is not limited to GCM, but rather constitutes
a general weakness of counter mode encryption. In particular, it similarly applies to
plain CTR [3] encryption, but also to the authenticated CCM [229], CWC [145] and
EAX [45] encryption modes. It does not apply to the recent GCM-SIV [105] and AES-
GCM-SIV [106, 103] modes, however, as the IV used for counter mode encryption is
derived from the message itself for GCM-SIV and AES-GCM-SIV. Due to the practical
relevance of GCM, we focus on GCM in this thesis.

Encrypting and Authenticating Messages

Similar to the previous Section 6.2.3, an attacker is able to obtain an encrypted message
Ci from plaintext Pi by requesting encryption of a different message of equal length
instead. However, for an attacker this approach is only useful if he also is able to generate
a valid authentication tag T .

From one observed ciphertext/plaintext pair an adversary can form the polynomial
c1H

m+n+1 + . . .+ cm+nH
2 + (len(A)|len(C))H +E(K,Y0) = T , where the coefficients ci

can be derived from the non-secret Ai and Ci. To authenticate arbitrary messages, the
attacker needs to knowH and E(K,Y0), which cannot be deduced from a single polynomial
equation. However, as soon as a second message for the same IV is observed, the equation
system becomes solvable, obtaining E(K,Y0) and a small number of candidates of H.
Hence, by requesting the encryption of two messages with equal IV, it is possible to
circumvent the CKMD in the creation of authenticated messages. This attack is known
as the “forbidden attack” [61], as it relies on IVs being reused, which is a scenario that is
explicitly excluded in security proofs for GCM.

Note, however, that the sole possibility for decryption does not enable the attacker to
authenticate arbitrary messages, since he cannot obtain distinct plaintext pairs with
the same IV in this case. He can, however, if encryption is allowed, easily circumvent
restrictions with regards to the content or the amount of encrypted messages.
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Figure 6.4: Subverting CKMDs in building a subliminal channel.

6.2.4 Exploiting GCM for Subliminal Communication

We now describe how the use of GCM can lead to a subliminal channel for architectures
where CKMDs are used. We target particularly high-security infrastructures, where
deployed network protocols have been designed to minimize the possibility for covert
channels and possibly even the use of digital signatures, which are prone for subliminal
communication [209, 56, 54, 114], might have been avoided. At the same time, in
security-critical infrastructures, the need for ensuring message integrity and authenticity
is inevitable, leading to the use of AEAD encryption like GCM.

Using T for Subliminal Communication

Figure 6.2 shows device communication for normal, i.e. benign, operation. Here, both
sending and receiving parties are equipped with CKMDs, which perform the actual
encryption and decryption tasks. When the sending application transmits a message P ,
the Sender creates a new IV, passes both P and the IV to the CKMD for encryption
in step 3 and sends the returned ciphertext C and authentication tag T to the Receiver
in step 6. The Receiver passes C, T and the IV on to the CKMD in for decryption
step 7, which verifies message authenticity and performs decryption. In case of successful
verification of the authentication tag T , the CKMD returns the message P to the Receiver
in step 9. Finally, the receiving application obtains the message P . If verification of T
fails, the CKMD denies decryption and returns a decryption error.

A Trivial Covert Channel We now describe how a subliminal channel can be
established, exploiting the authentication tag for carrying hidden information. To this
end, without going into detail about how compromisation might take place, we assume
that the Sender and Receiver have been compromised and require means to communicate
clandestinely thereafter. As we will demonstrate in Section 6.2.5, it is easily possible
that Sender and Receiver cannot rely on covert channels of lower network protocols and,
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hence, can only use the message itself or its authentication tag for hidden communication.
Sender and Receiver deploy CKMDs, which we do not assume compromised. Hence,
Sender and Receiver do not have access to secret keys for encryption.

With this setup, we will encode hidden information into the authentication tag of
encrypted messages in what follows. Hence, embedment of hidden information would
cause the legitimate verification procedure to fail. While this seems unsuitable for
subliminal or covert channels at first sight, since the encryption key is needed for verifying
message authenticity, only Sender and Receiver can verify message authenticity. In our case,
both Sender and Receiver are compromised, as they perform the hidden communication,
and therefore do not report the existence of the subliminal channel.

Of course, someone in possession of the respective secret key might reveal existence of
the subliminal channel. However, due to the secrecy of the appropriate key, this scenario
is highly unlikely. Furthermore, assuming that random oracles are implemented using
cryptographic hash functions, also traditional subliminal channels can be unveiled when
holding the secret key.

To ease comprehension, we begin by presenting how a covert channel can be established
when neither of the communicating parties deploy CKMDs. Figure 6.3 shows a scenario
where hidden information is transmitted from the SubSender to the SubReceiver. In this
scenario, it is possible to exploit the authentication tag for hidden information without
exploiting the mechanisms described earlier in this chapter.

Steps 1-4 in Figure 6.3 match normal operation, where SubSender obtains a message from
the application and performs authenticated encryption, obtaining C and T . However, to
clandestinely transmit information, SubSender encodes hidden information in step 5. The
operation AddSub() accepts the authentication tag T and computes the altered authentica-
tion tag TS , so that TS [LT − LS : ] =
T [LT − LS : ] ⊕ S and TS [ : LT − LS ] = T [ : LT − LS ], where LS denotes the length
of the hidden information S. Hence, the hidden information is encoded in the LS least
significant bits of T using an XOR operation.

The message C, TS is then sent to the SubReceiver in step 6, which can perform decryption
and computation of the expected authentication tag T in steps 7,8 as usual. However,
instead of raising an authentication failure when the received tag does not match T ,
authenticity of the message is verified by only comparing the most significant LT −LS bit
of T . Furthermore, hidden information S = TS [LT−LS : ]⊕T [LT−LS : ] can be recovered
in step 9 in terms of an XOR with the LS least significant bits of the authentication tag
computed during decryption.

Circumventing CKMD Verification We now assume that both SubSender and Sub-
Receiver deploy non-compromised CKMDs, aiming to achieve superior security. Receiving
a message with a faulty authentication tag, a CKMD is likely to deny message decryption
and possibly even raise an alarm. Exploitation of the authentication tag as subliminal
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channel therefore does not seem feasible anymore without sacrificing decryptability of
the message.

However, it is one of the specific properties of GCM encryption, which allows exploitation
as subliminal channel also in this case. Figure 6.4 shows the steps that SubSender
and SubReceiver undertake in submitting the message. Hence, in steps 4-6 similar to
normal operation, the SubSender submits the message to its CKMD for encryption. After
receiving back the ciphertext blocks Ci and authentication tag T , however, the SubSender
embeds hidden information S in step 7. Similar to the previous scenario, AddSub()
encodes S into the least significant bits of T in terms of an XOR operation, obtaining TS .

At the SubReceiver, processing of the message diverges from the previous scenario, as
the encrypted message cannot simply be passed to the CKMD due to the manipulated
authentication tag. As described in Section 6.2.3, the SubReceiver can perform decryption
by issuing an encryption request. Hence, in step 9 the SubReceiver generates an arbitrary
message R that has at least the same length as C and passes it to the CKMD for
encryption in steps 10-12, using the same IV as in the received message. It receives back
the ciphertext CR and authentication tag TR. Decryption of the ciphertext blocks Ci
can now be performed in step 13 as Pi = Ci ⊕Ri ⊕ CR,i.

For both verifying message authenticity and decoding the hidden information, however,
the original authentication tag T is needed. For this reason, the SubReceiver now passes
the obtained plaintext blocks Pi to the CKMD for encryption in steps 14-16, obtaining
the original authentication tag T . Similar to the previous scenario, the SubReceiver
can now recover S = TS [LT − LS : ]⊕ T [LT − LS : ] and verify message authenticity by
verifying the LT − LS most significant bits of TS in step 17. If verification passes, the
SubReceiver processes S in step 18 and, similar to normal operation, passes P to the
receiving application in step 19.
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Figure 6.3: Exploiting the authentication tag for hidden communication.
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Figure 6.5: A simplified subliminal channel.

Proof of Concept Implementation To verify functionality in practice, we used
the Envelope (EVP) encryption interface of OpenSSL version 1.1.1k and implemented
the steps depicted in Figure 6.4. We used EVP_aes_256_gcm as cipher. The 256-bit
encryption key and 96-bit IV were chosen at random. Furthermore, we used a random
authentication tag with length between 8 bytes and 16 bytes, a random message with
length between 1 and 100 bytes and a random hidden message with length between 1
byte and len(T )/8− 1 bytes. In all 109 runs we performed, verification of authenticity,
decryption of the overt message and recovery of the hidden message proceeded successfully.

Properties of the Subliminal Channel

In high-security environments, our presented subliminal channel has properties that might
be particularly attractive to an adversary.

Deployment The subliminal channel is agnostic to the used protocol. Hence, an
adversary does not have to learn semantics of the used protocol, but only needs to
compromise cryptographic algorithms. Since in normal operation preservation of the
authentication tag is necessary to ensure successful authenticated decryption, an adversary
can be sure that the subliminal information is retained from sender to receiver, independent
of how many nodes are in between them. This is in contrast to covert channels in
network headers, which might be destroyed by, e.g., devices performing Network Address
Translation (NAT).

Concealment Properties As discussed above, discovery of the subliminal channel
is possible only if the encryption key is known, which usually is difficult to achieve in
practice. Furthermore, even if the existence of the subliminal channel is known, decoding
of the information is only possible when holding the encryption key.

Of course, the requests that are sent to the CKMD differ substantially from usual
operations. Hence, statistical monitoring on the CKMD, or of the communication with
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the CKMD, might show abnormalities. However, considering the characteristics of the
architecture, it is highly unlikely that the subliminal channel would raise suspicion. In
particular, in most cases the CKMD lacks resources for performing statistical monitoring
and performing anomaly detection on the observed data.

Also considering its communication, even if communication can be monitored, e.g., in
a network environment, leaving this communication unencrypted would be detrimental
for security. Hence, in a practical scenario this communication must be encrypted, e.g.,
using a TLS-protected transport, making communication monitoring highly challenging.

Bandwidth for Hidden Communication For many practical security protocols,
small chunks of information are encrypted and authenticated like, e.g., network packets.
Hence, authentication tags are transmitted with a substantial frequency, offering a large
bandwidth for subliminal communication. In particular, compared to subliminal channels
known from digital signature schemes, the resulting number of requests to the CKMD
and the available bandwidth for hidden communication in most cases are considerably
higher.

Location of Compromised Devices In Figure 6.4, we depicted a scenario where
compromised parties coincide with the sender and receiver of benign communication.
Indeed, the receiver of the hidden information can only coincide with the receiver of the
overt information, as depicted in Figure 6.4, or, trivially, the receiver’s CKMD. The secret
key needs to be known to recover the hidden information and, furthermore, authenticity
verification would fail if the receiver cannot be compromised.

On the other hand, for encoding the hidden information no secret information is needed.
Hence, the sender of hidden information does not necessarily need to coincide with
the sender of the overt information, but instead might be located on any intermediate
node that is able to manipulate the transmitted message. We also want to note that,
when being able to compromise both sender and receiver, it might in certain cases be
possible to entirely circumvent CKMDs on both sender and receiver side and deploy
an attacker-provided encryption, hence allowing to create other facilities for hidden
communication. However, compared to a simple manipulation of the authentication tag,
such approach clearly would require a more extensive compromisation of the involved
devices, additional measures to avoid detection, and might overload the computational
resources of low-power devices like, e.g., sensors, as encryption can no longer be offloaded
to the CKMD. Furthermore, in comparison to such scenarios, dropping the requirement
for compromising the sender allows the described subliminal channel to be used in various
further scenarios. This property of the subliminal channel thus raises its significance
substantially, as attackers can choose arbitrary locations on the communication path to
unidirectionally communicate hidden information into a high-security infrastructure.
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A Simplified Subliminal Channel

In Figure 6.5, we show a variant of the subliminal channel described in Section 6.2.4,
which has slightly different characteristics. Steps 1-4 proceed as before. However, when
skipping the second encryption request in Figure 6.4, the original authentication tag is no
longer available for recovering S or ensuring message authenticity. Therefore, in contrast
to Section 6.2.4, in Figure 6.5, the operation AddSub() directly encodes S into the least
significant bits of TS instead of performing an XOR, i.e. TS [LT − LS : ] = S. In step 12,
this information can then trivially be recovered. However, it is no longer possible for the
SubReceiver to verify message authenticity.

This variant of the subliminal channel is slightly simpler, as it avoids a second encryption
request to the Receiver’s CKMD. It might also be of relevance for an attacker if the
communication between SubReceiver and the SubReceiver’s CKMD could be monitored.
In this case, it is unlikely that the observer is able to tell apart encryption requests from
decryption requests, since the communication to the CKMD itself is very likely to be
encrypted. However, since the processing of a message generates two requests to the
CKMD in Figure 6.4 instead of just one, observing the request pattern might already
unveil the existence of the subliminal channel.

For the attacker this simplified variant has a few downsides. Beside the fact that T is no
longer available to ensure message authenticity, the hidden information S is no longer
protected by the encryption key. Hence, when directly encoding transmitted information
into S, the information would be openly readable by anyone who is able to intercept
the message from the SubSender to the SubReceiver. Furthermore, the distribution of
T would deviate from a uniform distribution, disclosing the existence of a subliminal
channel on closer analysis. The attacker can counter these drawbacks by performing
suitable encryption of S using an attacker-provided key.

Similar to the variant described in Section 6.2.4, we created a proof of concept to verify
functionality of this simplified subliminal channel.

6.2.5 An Exemplary Infrastructure

To illustrate the relevance of the facilities for hidden communication described in this
chapter, we now discuss an exemplary infrastructure, where the subliminal channel might
pose a severe threat to security. Figure 6.6 illustrates a practical implementation of the
previous generic architecture. The sensor network at the left comprises many IIoT devices
like, e.g., charging stations, smart meters, or smart manufacturing devices. These IIoT
sensors must authenticate and encrypt the generated data at application layer before
sending it to the sensor network, presumably relying on AES-GCM due to its popularity
and attractive properties.

Most IIoT devices have limited resources in terms of computational power and memory
because of cost considerations. Sensor devices may benefit from using a CKMD in form
of a tamper-proof on-board module over storing the cryptographic key in clear for two
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Figure 6.6: Exploiting the subliminal channel in an IIoT infrastructure.

main reasons: Performance and security. From a performance perspective, the offloading
of computationally expensive cryptographic operations to dedicated hardware on the
CKMD can reduce overall system sizing and minimize costs by using specialized hardware
on the CKMD. From a security perspective, the cryptographic key material must be safely
protected against eavesdropping, considering that the sensor devices may be subject to
continued physical access by customers or, even worse, unauthorized third parties.

The Data Concentrator in Figure 6.6 aggregates the data of several IIoT devices on the
sensor network. It maintains a security association (for instance TLS or IPsec) to tunnel
the data via the public Internet to an Edge Server connected to the corporate network’s
Demilitarized Zone (DMZ).

The Edge Server’s role is to protect the trusted corporate Operating Technology (OT)
network against outer access while serving as a security gateway for data that was
generated by external sensors. On this behalf, the Edge Server terminates the Data
Concentrator’s security tunnel and demultiplexes the aggregated data. Subsequently, it
verifies and decrypts the data originated by the IIoT devices using the CKMD Server,
i.e. one of possibly several dedicated network servers in the corporate OT network for
performing cryptographic tasks. Deploying dedicated servers for this task in the corporate
OT network brings several benefits:

1. Security. The Edge Server’s network interface connected to the corporate DMZ results
in an increased attack surface. Storing unique keys for each IIoT device on such
an exposed system is neither scalable nor acceptable from a security perspective.
Therefore, it is recommended to store the key material on a CKMD, constituting a
separate, shielded component.

2. Physical key access. The CKMD Server offers a restricting interface that physically
prohibits access to the cryptographic key material. Keys are encapsulated within
the CKMD and well-protected against extraction attempts. Moreover, decryption
operations are restricted to legitimate operations. In particular, decryption requests
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are rejected whenever authenticity verification fails. This restriction is an additional
hurdle in abusing the CKMD.

3. Performance considerations. Decryption and verification of data entries from hundreds
or thousands of IIoT devices at potentially high rate can result in performance
bottlenecks. The outsourcing of these operations to the CKMD Server(s) relieves the
Edge Server from this effort and supports load balancing if needed.

Following successful decryption, the Edge Server forwards the decrypted IIoT data to the
destination Application Server for further processing.

Due to the sensitivity of transmitted data, communication between Edge Server and
both CKMD Server and Application Server is end-to-end protected, for instance using
TLS transport-layer encryption. Furthermore, an IDS monitors the network traffic in
the corporate OT network and in the DMZ, identifying anomalous behavior and raising
alarms on suspicious traffic. However, we assume that because of security reasons the
IDS neither has access to key material nor can it intercept TLS connections within the
corporate OT network.

Relevance of Subliminal Communication

One main observation concerning Figure 6.6 is that the presented architecture can
effectively protect against network-layer or transport-layer covert channels or subliminal
channels. Data concentration and potentially distinct protocols in the sensor network
and over the Internet – for instance IPv6 and UDP addressing in the sensor network
vs. IPv4 and TLS over TCP in the Internet – can effectively block all attempts for
covert communication. Assuming a compromise of IIoT sensors and the Edge Server,
the proposed GCM subliminal channel is an ideal candidate for hidden communication
between these two. The monitoring IDS in Figure 6.6 cannot unveil this subliminal
channel unless the observed encrypted traffic pattern differs from the benign case.

A second observation concerns the assumption of CKMDs supporting the IV to be a user-
provided parameter for encryption: IIoT device manufacturers face tremendous pressure
to decrease the costs per unit due to the high production volume. The production volume
of CKMDs can be increased (and the cost per module can be reduced) by implementing
stateless operation and flexible options to configure cryptographic input parameters. On
the IIoT device itself, on the other hand, state keeping usually is necessary also for
accomplishing other tasks. Hence, computation of IVs on the IIoT device does not add
cost. Therefore, we argue that our assumption of stateless CKMD operation, allowing
applications to provide the IV for GCM encryption, is absolutely legitimate.

As a final note, we remark that a straightforward solution seems to be the implementation
of an end-to-end TLS secured connection between IIoT devices and Application Server.
However, complex security architectures like the one shown in Figure 6.6 are a prerequisite
to operate the huge base of existing IIoT devices. The available capacity of typical sensor
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networks, as well as the huge count and limited computational performance of IIoT
devices, are commonly prohibitive factors in implementing end-to-end TLS.

6.2.6 Mitigations

To avoid the attack scenarios highlighted above, a natural solution is to use a different
mode of operation instead. For example, the use of the recent GCM-SIV scheme can
be recommended. GCM-SIV retains most attractive properties and, in particular, the
performance benefits of GCM, but implements means to alleviate issues arising from IV
reuse by choosing the IV for counter mode encryption depending on the message itself.
AES-GCM-SIV [106], which has been standardized in [103], enhances the construction
further to obtain improved security bounds. Compared to GCM, GCM-SIV and AES-
GCM-SIV have the only drawback of no longer operating in an online fashion, i.e.
requiring two passes through the data for encryption instead of just one.

Alternatively, an operational mode that does not deploy counter mode encryption can be
used instead like, for example, the traditional choice of Cipher Block Chaining (CBC) [3]
in conjunction with a Hash-based Message Authentication Code (HMAC). While the
reuse of IVs downgrades security also for modes like GCM-SIV or CBC, security breaches
are not as detrimental as for GCM. In particular, it is no longer possible to achieve
decryption by issuing an encryption request, ruling out the possibilities for subliminal
channels described in this chapter.

However, AES-GCM is a very popular cipher. Modes like CBC might be difficult to
deploy due to their downsides with respect to encryption speed. If compatibility with
existing implementations is required, the use of GCM might be the only option in practical
scenarios. Thus, the question arises how to improve security of architectures described in
this chapter while retaining GCM encryption.

As described above, a universal method for avoiding attack possibilities is letting the
CKMD generate an IV for each encrypted message. Since we assume the CKMD stateless
in most cases, however, IV generation might have to take place randomly, allowing the
random IV to be used as a subliminal channel originating from the CKMD. The use of
random IVs would, furthermore, incur the drawbacks described in Section 6.2.2. Since
random IV generation requires transmitting the IV values with each message, it might not
only require a modification of existing implementations, but also a protocol adaptation.

A further simple method to avoid most attacks described in Section 6.2.3 is to ensure that
forward and reverse direction use different keys or IVs. Hence, from a given configured key,
subkeys can be derived for each direction, respectively. This approach allows preventing
all attacks that are based on performing decryption by issuing an encryption request or
vice versa. It does not prevent the “forbidden attack”, however, which allows performing
authenticating encryption of an arbitrary amount of messages by requesting just two
encryptions with the same IV.

If the same encryption key has to be used in both directions for reasons of, e.g., compati-
bility with existing implementations, a further possibility is to preconfigure certain parts
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of the IVs on the CKMD. It is sufficient if the CKMDs of the communicating parties
require one bit of the IV to be set to respective different values for both directions for
the subliminal channel, as described in this chapter, to stop working. In fact, NIST
recommendation [77] already specifies that a part of the IV identifies the device and,
hence, is constant for all invocations on one CKMD. Therefore, this recommendation
would only have to be enforced by the CKMD. However, just as using different encryption
keys for communication directions, the approach similarly fails to protect against message
forgery from two authenticated messages sharing one IV.

6.2.7 Discussion

Despite being understood as reasonable approaches for achieving security when being
used on their own, combining GCM and CKMDs risks to yield a false sense of security.
We highlighted attack possibilities that can be used to circumvent restrictions that might
be applied by a CKMD in performing encryption or decryption tasks, and showed in
particular how these methods can be used to establish a subliminal channel utilizing
the authentication tag. Since the CKMD would deny decryption, the establishment of
this subliminal channel would not be possible otherwise. For an attacker, the subliminal
channel has very attractive properties and allows communicating substantial amounts
of hidden information in infrastructures that aim to meet highest demands in terms of
security and privacy. Various scenarios allow clandestinely transmitting information.
While we focused on GCM, the technique is also applicable to encryption modes that are
constructed in a similar way.

We went into detail for an exemplary infrastructure in the field of IIoT and additionally
highlighted several approaches for how the threats discussed here might be mitigated.
The most potent remedy is to choose a different operational mode like GCM-SIV for
encryption. Alternatively, IVs can be chosen directly on the CKMD to avoid attack
possibilities, which, however, is likely to enable a subliminal channel originating from the
CKMD.

Since the described threats target specifically high-security infrastructures, future develop-
ment of operational modes and future architectural design of high-security infrastructures
should consider possibilities for hidden communication using approaches we described.
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CHAPTER 7
Discussion

In the following sections, we will provide a summarizing discussion of the work we
have conducted throughout the previous chapters. To show relevance for deployment in
practical applications, we will discuss implications for the construction of real-world IDSs
of our rather research-oriented experiments and our theoretical work.

As a basis for future work, we also provide pointers for possible research questions that
still need investigation, but we also discuss challenges that must be considered when
working in this area.

7.1 Summarizing Discussion

Our goal in this thesis was to investigate several aspects of ML-based IDS design that are
highly relevant when deploying such techniques in a highly security-critical infrastructure.

We investigated the use of unsupervised methods with focus on detection performance,
processing speed and interpretability. This work on streaming outlier detection algorithms
has shown that no ideal method is available to date that matches the characteristics and
challenges of processing network traffic. Besides the problem of processing speed, which
we tried to alleviate with our dSalmon framework, many modern approaches for outlier
detection rely on workings that do not allow interpretation of the outlier score. In addition,
our experiments have shown that also considering detection performance unsupervised
ML is not yet able to match the good results that can usually be obtained with supervised
ML. Approaches like the OptOut feature vector we introduced in Section 3.3.4 might be
evaluated to optimize outlier detection performance. However, such specialized feature
vectors have to stand the test of time, as we cannot preclude that the OptOut feature
vector delivers good performance only for the attacks or the specific data we have used
in our experiments.
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Still, the concept of anomaly detection yields potential for being used in NID, since only
unsupervised ML allows detecting unknown attacks. If detection performance is not
ideal, interpretability becomes even more important to be able to manually investigate
observed data and assess whether specific flows might constitute an attack. It is therefore
necessary to provide as much context of an observed flow to human security experts as
possible. An interesting option is to additionally capture when similar flows have been
observed and with which periodicity they reoccur. Our approach to achieve this goal
can thus yield substantial potential for practical deployability of IDSs, as this temporal
information in many cases is easier interpretable than a feature vector consisting of
statistical features. Furthermore, in contrast to many other outlier detection algorithms
for streaming data, our SDOstream is lightweight enough to allow usage in this domain,
even when requiring substantial memory lengths.

Apart from unsupervised ML, more traditional supervised ML must of course not be dis-
regarded for IDSs in security-critical infrastructures. Considering detection performance
of such methods, the related research has demonstrated remarkable results, so in this
thesis we filled the gap of augmenting the most promising techniques with methods for
providing explainability. Comparing both approaches, we come to the conclusion that
methods that provide interpretability by themselves have to be favored compared to using
additional methods, like PDPs, that explain results from ML models lacking inherent
explainability. PDPs, ALEs and sequential PDPs were able to depict to a certain extent
how feature values influence the classifiers’ predictions, but did not convince entirely in
defending against adversarial ML. Still, if NNs or RFs are used, they can provide valuable
information about the classification process.

7.2 Challenges and Difficulties

The field of ML has shown many challenges and pitfalls and requires a high level of
precision when conducting experiments. In this section, we briefly outline difficulties we
encountered during our work on this thesis.

7.2.1 Research Challenges in Our Field

Conducting high-quality research in the field of NID involves a few challenges, which we
show up in this section.

One of the biggest challenges is obtaining suitable data for training and evaluating IDSs.
Curating data that depict human behavior for a representative amount of time (e.g.
months) raises substantial data protection concerns and prompts huge storage and transfer
needs, which explains why only very few datasets of such kind are publicly available. The
problem becomes even more difficult, however, if labeled data are required, since labelling
is an extremely expensive, time-consuming and error-prone process. In bilateral projects
with industry, real datasets can be used for investigating our algorithms. However,
publication of data from project partners is often not possible and therefore publication
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of results based on such data is difficult and also hinders the fulfillment of reproducibility
standards. In this thesis, we often used the CIC-IDS-2017 and UNSW-NB15 datasets,
which met our requirements, but in previous research showed some shortcomings [80].
Not only would our own demand for high-quality experimentation request the use of more
datasets, but we noticed that this issue also frequently raises criticism in the scientific
community. We were unable to overcome this issue due to the lack of other appropriate
datasets.

An issue related to the availability of datasets is the question of which metrics to use for
IDS evaluation. As described in Chapter 2, there is no natural metric for how performance
of an IDS has to be evaluated. We therefore computed several metrics to provide an
overview over how methods perform. However, since different authors provided different
metrics in their publications, results are not always comparable to previous work and
results from existing work cannot always be compared. It should also be noted that
providing several metrics still leaves some problems, since for some tasks a single metric is
needed. Examples include hyperparameter search or certain feature importance methods.
We tried to select the most usual or most reasonable metric in such cases.

A challenge that is very specific to methods we explored in this paper involves the
computational demands of streaming data processing. If a model should be updated
with every observed sample, batch data processing usually is not possible, making
implementations in Python or other scripting languages commonly used in data science
exceedingly slow. We tried to alleviate this problem with our dSalmon framework, also
allowing future researchers to process data streams with good speed. The problem
remains, however, that new algorithms or algorithm adaptations require implementation
in a relatively low-level programming language and manually making use of multithreading
possibilities. While the efficient implementation of completed algorithms is no big problem
in practice, this provides an obstacle for many data science researchers or slows down
development.

7.2.2 Unanticipated Difficulties

As already mentioned above, the search for good datasets is a difficult task in many cases.
We noticed that in particular for analyzing temporal patterns the search for a suitable
dataset was very difficult. The reason for this problem can be traced back to the fact that
in many cases datasets are created for a short timespan only. However, for our scenario
we required patterns that are stable for a longer period, so that periodicities in the range
of, e.g., days can be detected. The reason for why datasets representing a longer period
are rarely available is likely due to the substantial storage and transfer needs for datasets
of this size. We note that this problem is dominant in the research phase, but less in the
application phase, since during application the algorithm can simply be applied to live
data as it is captured.

The task of traffic separation turned out to be more difficult than we originally assumed.
In fact, the usual approach to assess anomalousness with NNs is to use an autoencoder.
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Preliminary experiments to use autoencoder architectures for this task did not succeed.
We furthermore attempted to perform flow separation by using gradient descent on
a differentiable total anomalousness instead of using a Viterbi-like algorithm, which
similarly did not yield good results. Unfortunately, the usual publication processes in our
field, which enforce length-constrained publications, did not allow us to describe these
failed attempts in our published papers.

7.3 Opportunities for Improvement and Future Research

To date, the performance results that can be obtained by unsupervised ML techniques
are not yet satisfactory. Hence, it is still an important research direction to evaluate new
approaches for anomaly detection or test new feature vectors or detectability of certain
attack types. Our proposed methods have shown new directions that have benefits in
particular when interpretability is important. Due to the vast amount of possibilities
to construct anomaly detection algorithms, a targeted development of an ideal outlier
detection algorithm for application in the field of IDS is hardly possible, but rather
involves a certain amount of trial-error.

As already mentioned above, an issue that is omnipresent in the field of ML-based
IDS research is that of obtaining good datasets. We therefore consider the creation or
consolidation of new datasets a pressing problem, which deserves more attention in the
scientific community. Since it is almost unavoidable that minor mistakes or inaccuracies
lead to a dataset that might later be disputed by independent reviewers, we consider it
more meaningful to provide scripts and frameworks for dataset generation in addition to
the datasets themselves, so that good datasets can evolve in the course of time. This
approach also alleviates the problem of being limited to certain attacks, since new attacks
can then easily be added.

A particular area of potential future research applies to our work on the subliminal
channel exploiting GCM. Our work in this area contrasts previous work in this area
by being based on a particular architecture that is highly relevant for high-security
infrastructures. Hence, future work might explore both, the use of further encryption
methods in such a scenario but also possible means of defense.

For our work on separating flows in encrypted tunnel traffic, a similar observation can be
made. Also in this case the problem setting that we explore is very novel. Future work
might explore different neural network architectures for assessing whether individual
packets are anomalous. Alternatively, different methods for performing the separation,
i.e. minimizing total anomalousness, might be investigated and optimized. Furthermore,
an interesting question would be further investigating which types of traffic show patterns
that are sufficiently distinctive to allow separation and whether this only holds when
mixing it with very different traffic or also with traffic of the same kind. Also implications
for practice and defense strategies could further be explored.
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7.4 Recommendations for IDS Construction
Highly application-oriented scenarios motivated the problem setting we explore in this
thesis. To match this highly practical setting, we want to provide some practical guidelines
from the results of our work.

Our experiments have shown that neither unsupervised ML in terms of anomaly detection
nor supervised ML are ideally suited for attack detection in NID. In particular, while
unsupervised techniques show detection performances that are hardly sufficient in many
scenarios, supervised techniques can only detect known attack types and explainability is
not as straightforward as when using simple nearest-neighbor-based outlier detection. It
therefore appears reasonable to deploy a system combining both paradigms. To the effect
of interpretability, it then makes sense to provide the results of both techniques to the
data analyst instead of just providing an anomaly score that is formed in an abstract way.
Furthermore, explainability should be kept in mind in the design of both unsupervised
and supervised techniques, e.g., by relying on techniques as outlined in this thesis.

An aspect that is often overlooked in IDS design is the expressiveness of the temporal
reoccurrence of specific types of observed traffic for understanding the type of traffic and
aiding NID. Indeed, due to strongly time-dependent human behavior, certain types of
traffic are likely to be seen at specific points in time and the information at what points
in time this particular type of traffic is usually seen may provide much more information
than a feature vector obtained from abstract statistics. It is therefore reasonable to
design ML methods to provide this kind of information.

We consider the technique of flow identification in encrypted tunnel traffic we introduced in
this thesis a particular interesting approach. The basic experiments that we conducted in
this thesis clearly showed that the risk of an attacker being able to successfully identifying
individual flows cannot be neglected, even though our method or our deep learning model
doubtlessly still could be improved. Hence, to improve security additional techniques
for obfuscation of traffic characteristics should be used for tunnel encryption that avoid
leaking observable traffic patterns to eavesdroppers even though such techniques harm
performance slightly. On the defender’s side, the same technique certainly shows up an
interesting direction, but considering our conducted experiments does not yet seem to be
mature enough for being used to analyze encrypted tunnel traffic.

Finally, our experiments underlined an assertion that should be evident from common
sense but might be neglected in everyday life when resources for implementing security
are sparse: While an IDS is a reasonable concept to improve network security, it cannot
be the only line of defense. This, however, holds true for any other security technique
as well. We have made this fact very clear by pointing out the possibility for malware
communication that cannot possibly be detected by IDSs. In addition to the use of an
IDS, additional measures should thus be taken to ensure that malware does not even enter
the enterprise network, which, e.g., might involve training employees in security-related
topics.
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CHAPTER 8
Conclusion

In the light of modern high-security infrastructures, research in network security becomes
more and more important. In such scenarios, challenges must be considered that go
beyond just achieving high accuracy in attack detection by far. Explainability is a major
concern and increasing attack sophistication requires detectors able to identify targeted
attacks of still unknown nature.

In this thesis, we have covered several aspects of security in such environments. The area
of outlier detection in streaming data receives its significance in this respect from the
fact that only unsupervised methods allow to detect unknown attacks. Our overview
and our algorithm design and implementations substantially contribute to the available
state of research, allowing researchers to use the most suitable method for their intended
task. We have investigated explainability and interpretability in both supervised and
unsupervised domains and devised an algorithm for unsupervised anomaly detection
that is particularly well suited for the characteristics and challenges in NID. Due to
the characteristics of network data, our focus naturally was on the online processing of
streaming data.

Our work has revealed that various pressing research problems remain in the field of NID
research. Not only do detection methods themselves still need to be improved, but also
the realistic evaluation of IDSs provides many challenges to researchers. Considering
detection accuracy, research is only at the beginning for unsupervised attack detection
and substantial further research is required on fruitfully applying unsupervised methods
on network traffic. We have additionally introduced several novel ideas that open up
new research directions, namely our described attack scenario in the GCM subliminal
channel, our approach of encrypted traffic analysis and our novel approach to handle
temporal patterns. All these concepts prompt the evaluation of a wide range of further
methods in the described scenarios.

149



8. Conclusion

Considering our research questions, we note that the construction of potent IDSs and the
secure use of encryption still pose challenges in high-security infrastructures. We asked
whether it is possible to detect network attacks with good accuracy with unsupervised
methods. Unfortunately, based on our experiments we cannot attest good detection
accuracy to most anomaly detection methods. Additionally, a kNN approach, which
would provide explainable results, also is among the slowest anomaly detectors. This
downside, however, we have been able to address by designing an anomaly detector that
provides both, interpretability and decent runtimes. In the supervised domain, results
are more promising, since predictions from well-performing supervised detectors can be
made explainable to a certain extent.

We can derive several lessons learned and generalized findings from the work in this thesis.
In general, at least in the case of infrastructures where high security has to be achieved,
simple methods like, e.g., shallow models or kNN-based approaches, seem to be a better
choice than modern methods like deep learning. While a substantial body of research
has been conducted in the recent years on explainability, such methods are a partial
solution, but no perfect solution to explain the decision processes in complex classifiers,
e.g., when it comes to investigating regions that might be exploited by adversarial
samples. Even though best practices in such infrastructures involve the use of reasoned
and well-tested security techniques, our work on GCM and tunnel encryption has shown
that shortcomings and security risks might still exist that have not been discovered or
anticipated before.

150



List of Figures

2.1 A simplistic NN, as it might be used for binary classification. . . . . . . . 17

3.1 Available methods for streaming outlier detection. . . . . . . . . . . . . . 34
3.2 Architecture of dSalmon. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3 Execution time comparison for nearest-neighbors-based streaming anomaly

detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Overall comparison of the resource consumption of several outlier detectors

implemented by dSalmon and PySAD. For each parameter setting, values
are normalized to results obtained by single-threaded dSalmon for better
comparison. Bars depicted for each algorithm parameterization indicate
results for SWAN-SF, KDD Cup’99 and CIC-IDS-2017 in this order. . . 42

3.5 Time, memory and outlier detection performance for HS-Trees using a tree
depth of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6 Runtimes of HS-Trees in response to variations of the tree depth. . . . . . 44
3.7 Runtimes of the xStream algorithm in response to variations of the number

of projections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 A quick overview of how the studied algorithms estimate the outlierness (oa)

of a random point a. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Box plots for outlierness ranks. . . . . . . . . . . . . . . . . . . . . . . . . 54
3.10 Normalized histograms (top 5% outliers removed for a better visualization). 54
3.11 OptOut forward selection process. . . . . . . . . . . . . . . . . . . . . . . 57
3.12 OptOut vector. Normalized histograms (top 5% outliers removed for a better

visualization). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Short-sightedness of SWs: p is an outlier for the SW, but an inlier for
SDOstream. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Performances for the KDDCup’99 dataset (left) and behavior for emerging
new clusters at t = 50, 000 with synthetic data (right). . . . . . . . . . . . 67

4.3 Illustration of out-of-phase outliers. While A is a spatial outlier, B is a
out-of-phase outlier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Outliers and out-of-phase outliers in synthetic data for a fraction of out-of-
phase outliers of 0.5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 Outlier detection performance for synthetic data. . . . . . . . . . . . . . . 79

151



4.6 Learned magnitude spectrum (left), one-hour temporal plots (middle) and
24-hour temporal plots (right) for four exemplary observers when processing
network data captured in an e-charging infrastructure. . . . . . . . . . . . 81

4.7 Assigned outlier scores for network data captured in an e-charging infrastruc-
ture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.8 Sampling of arriving data points as new observers when processing network
data captured in an e-charging infrastructure. . . . . . . . . . . . . . . . . 83

4.9 Inverse FT of the top four observers after processing darkspace data. . . . 84
4.10 FT of the top three observers after processing darkspace data. . . . . . . 84
4.11 Separating flows in encrypted tunnel traffic. . . . . . . . . . . . . . . . . . 86
4.12 The architecture of our deep learning model. . . . . . . . . . . . . . . . . 90
4.13 Performance results for our synthetically generated dataset. . . . . . . . . 99
4.14 Maximum rank of the ground truth solution in the Pa-sorted A. . . . . . 100
4.15 Distribution of per-flow accuracies (left) and transition accuracies (right) when

separating 2 flows (top), 3 flows (center) and 4 flows (bottom) with equal
packet sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.16 Obtained performance when separating steady synthetic flows with different
time offsets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 PDPs and ALE plots of the MLP for CIC-IDS-2017. Full range of stdev(TTL)
values on top; stdev(TTL) values from 0 to 5 below. . . . . . . . . . . . . 109

5.2 PDPs and ALE plots for mean(TTL) for the CIC-IDS-2017 RF and MLP
classifiers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Feature importance metrics for the flow prediction for CIC-IDS-2017 (left
side) and UNSW-NB15 (right side). . . . . . . . . . . . . . . . . . . . . . 117

5.4 Two distributions yielding an identical accuracy drop. . . . . . . . . . . . 118
5.5 PD plot for the source and destination port features. . . . . . . . . . . . . 119
5.6 Classifier confidence per time step for CIC-IDS-2017. For the majority of

attack types, confidence increases in the first few steps and then stays almost
constant at 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Exemplary sequential PD plot and adversarial flows for the DoS Slowloris
attack in CIC-IDS-2017. The lines show the feature’s mean values. The
shaded region shows the change in confidence that occurs when the feature is
varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.8 IAT and packet length for SSH brute-force attacks in CIC-IDS-2017. . . . 121

6.1 The GCM encryption process for two blocks of encrypted data and one block
of additional authenticated data. . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Normal device communication when using CKMDs. . . . . . . . . . . . . 131
6.4 Subverting CKMDs in building a subliminal channel. . . . . . . . . . . . . 133
6.3 Exploiting the authentication tag for hidden communication. . . . . . . . 135
6.5 A simplified subliminal channel. . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Exploiting the subliminal channel in an IIoT infrastructure. . . . . . . . . 139

152



List of Tables

2.1 Datasets used throughout this thesis. . . . . . . . . . . . . . . . . . . . . . 22
2.2 Flow occurrence frequency of attack types. . . . . . . . . . . . . . . . . . 24

3.1 Approaches for handling concept drift. . . . . . . . . . . . . . . . . . . . . 27
3.2 Outlier detection methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Studied NTA representations (feature vectors). . . . . . . . . . . . . . . . 52
3.4 Used parameters in the experiments. . . . . . . . . . . . . . . . . . . . . . 53
3.5 Algorithm performances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.6 OptOut feature vector after forward selection (SDO nested). . . . . . . . 56
3.7 Algorithm performances for the OptOut feature vector. . . . . . . . . . . 57

4.1 Symbols and notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 ROC-AUC scores for static datasets. . . . . . . . . . . . . . . . . . . . . . 68
4.3 Performance comparison with different outlier detection algorithms. . . . 80
4.4 NID results when using our proposed architecture as anomaly detector. . 95
4.5 Performance results for real-world data. . . . . . . . . . . . . . . . . . . . 101

5.1 Detection performance results. . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Performance metrics per packet and per flow. MLP values from [42] are

presented for comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5.3 Accuracy drop for input perturbation and feature dropout. . . . . . . . . 115

153





List of Algorithms

4.1 SDOstream: Processing a data point (vi, ti). . . . . . . . . . . . . . . . 66

4.2 Processing a data point (vi, ti) for outlier detection and temporal pattern
discovery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Solving for packet associations a for separating flows. . . . . . . . . . . 95

155





Acronyms

kNN k Nearest Neighbors. 18, 19, 28, 29, 40, 48–50, 52, 55, 56, 60, 63, 68, 78, 150

AAP Adjusted Average Precision. 3, 15, 55, 56, 80, 95

AEAD Authenticated Encryption with Associated Data. 125, 126, 128, 133

AES Advanced Encryption Standard. 124, 125, 129, 130, 132, 138, 141

ALE Accumulated Local Effects. 4, 6, 20, 21, 108–110, 144, 152

AML Adversarial Machine Learning. 111, 113, 114

AP Average Precision. 15, 55, 56

AP@n Adjusted Average Precision at n. 3, 15, 55, 56, 80, 95

APT Advanced Persistent Threat. 22

ARI Adjusted Rand Index. 98, 99, 101

ASA Algorithm Substitution Attack. 125

CBC Cipher Block Chaining. 141

CKMD Cryptographic Key Management Device. 125–128, 131–142, 152

CMS Count-min sketch. 45

CTR Counter Mode. 126, 132

CW Carlini-Wagner method. 113

DDoS Distributed Denial-of-Service. 46

DMZ Demilitarized Zone. 139, 140

DoS Denial-of-Service. 118

157



DPI Deep Packet Inspection. 9

DT Decision Tree. 15, 16, 20, 106

EVP Envelope. 136

EWMA Exponentially Weighted Moving Average. 28, 29, 32, 60, 65, 69, 71, 72, 77

FT Fourier Transform. 65, 69, 72–74, 76, 77, 82, 84, 152

GCM Galois/Counter Mode. 6, 7, 124–130, 132, 133, 135, 138, 140–142, 146, 149, 150,
152

HBOS Histogram-based Outlier Score. 18, 48–50, 52, 54–57

HMAC Hash-based Message Authentication Code. 141

IAT Inter-Arrival Time. 10, 27, 62, 66, 75, 85, 88–91, 95, 98, 101, 107, 112–114, 118,
121, 152

IDS Intrusion Detection System. 2–4, 6, 7, 11–14, 18, 19, 21–23, 25, 26, 46–48, 59, 85,
105–108, 110–112, 119, 121, 122, 126, 140, 143–147, 149, 150

iForest Isolation Forest. 31, 48–50, 52, 55, 56

IIoT Industrial Internet of Things. 127, 138–142, 152

IT Information Technology. 1, 2, 7

IV Initialization Vector. 125–127, 129–133, 135, 136, 140–142

LOF Local Outlier Factor. 18, 31, 48–50, 52, 55, 56, 63, 68

MAC Message Authentication Code. 124

ML Machine Learning. vii, 2–7, 9–16, 19–21, 33, 47, 59–61, 70, 85–88, 94, 105–108,
110–112, 115, 122, 143, 144, 146, 147

MLP Multilayer Perceptron. 17, 107–110, 112, 113, 152, 153

MuI Model under Investigation. 20, 108–110

NAT Network Address Translation. 136

NID Network Intrusion Detection. 1–5, 12, 13, 16, 17, 23, 46, 57, 70, 85–87, 94, 95, 106,
144, 147, 149, 153

158



NN Neural Network. 12, 15–18, 20, 62, 92–95, 98, 99, 102, 105, 106, 112–116, 119, 122,
144, 145, 151

NTA Network Traffic Analysis. 3, 7, 9–11, 47, 51, 59, 63, 153

OT Operating Technology. 139, 140

P@n Precision at n. 15, 36, 55, 56

PCAP Packet Capture file. 9, 52

PDP Partial Dependence Plot. 4, 6, 20, 21, 108–110, 112, 119–122, 144, 152

PGD Projected Gradient Descent. 114

RAPL Running Average Power Limit. 38

RBG Random Bit Generator. 130

ReLU Rectified Linear Unit. 108

RF Random Forest. 15, 16, 20, 64, 106–110, 144, 152

RNN Recurrent Neural Network. 4, 7, 18, 106, 111–114, 116, 119, 121, 122

ROC Receiver Operating Characteristic. 15, 80

ROC-AUC Area under the ROC curve. 3, 15, 36, 40, 52, 54–56, 68, 79, 80, 95, 153

RRCF Robust Random Cut Forest. 28, 31, 42

RW Reference Window. 27, 28, 32, 42

SDO Sparse Data Observers. 48–50, 52, 54–57, 60, 64, 65, 67, 68, 70, 153

SETUP Secretly Embedded Trapdoor with Universal Protection. 125

SIDS Signature-based Intrusion Detection System. 11, 12

SMD Simple Matching Distance. 29

SW Sliding Window. 19, 27–32, 40, 42, 63, 64, 77, 151

TPM Trusted Platform Module. 127

TTL Time-to-Live. 55, 107–110, 112

VPN Virtual Private Network. 3, 5, 60, 62, 86–90, 101

XOR Exclusive Or. 129, 131, 132, 134, 135, 138

159





Bibliography

[1] What is critical infrastructure? why does critical infrastructure security
matter? URL https://www.paloaltonetworks.com/cyberpedia/
what-is-critical-infrastructure. Accessed: 2023-05-07.

[2] Nielsen’s law of internet bandwidth. URL https://www.nngroup.com/
articles/law-of-bandwidth/. Accessed: 2023-05-07.

[3] Fips 81, des modes of operation. Federal Information Processing Standards Publi-
cation 81, page 17, 1980.

[4] Kdd cup 1999 data. http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, 1999. Accessed: 2023-05-07.

[5] Supplement to part 11: Wireless medium access control (mac) and physical layer
(phy) specifications: High speed physical layer in the 5 ghz band. IEEE Std.
802.11a-1999, 1999.

[6] Supplement to part 11: Wireless medium access control (mac) and physical layer
(phy) specifications: Higher speed physical layer (phy) extension in the 2.4 ghz
band. IEEE Std. 802.11b-1999, 1999.

[7] Fips 197, Advanced encryption standard (AES). Federal Information Processing
Standards Publication 197, page 51, 2001.

[8] Supplement to part 11: Wireless medium access control (mac) and physical layer
(phy) specifications: Further higher data rate extension in the 2.4 ghz band. IEEE
Std. 802.11g-2003, 2003.

[9] Supplement to part 11: Wireless medium access control (mac) and physical layer
(phy) specifications: Medium access control (mac) security enhancements. IEEE
Std. 802.11i-2004, 2004.

[10] Supplement to part 11: Wireless lan medium access control (mac)and physical layer
(phy) specifications: Enhancements for higher throughput. IEEE Std. 802.11n-2009,
2009.

161

https://www.paloaltonetworks.com/cyberpedia/what-is-critical-infrastructure
https://www.paloaltonetworks.com/cyberpedia/what-is-critical-infrastructure
https://www.nngroup.com/articles/law-of-bandwidth/
https://www.nngroup.com/articles/law-of-bandwidth/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


[11] Supplement to part 11: Wireless medium access control (mac) and physical layer
(phy) specifications: Enhancements for very high throughput for operation in bands
below 6 ghz. IEEE Std. 802.11ac-2013, 2013.

[12] RFC 7011 - Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information. Technical report, Internet Engineering Task
Force (IETF), September 2013. URL https://www.ietf.org/rfc/rfc7011.
txt.

[13] UCI machine learning repository. http://archive.ics.uci.edu/ml, 2013.
Accessed: 2023-05-07.

[14] Ieee standard for local and metropolitan area networks-media access control (mac)
security. IEEE Std 802.1AE-2018 (Revision of IEEE Std 802.1AE-2006), pages
1–239, 2018. doi: 10.1109/IEEESTD.2018.8585421.

[15] Wireshark wiki: WLAN, 2020. URL https://wiki.wireshark.org/
CaptureSetup/WLAN. Accessed: 2023-05-07.

[16] Mayank Agarwal, Sanketh Purwar, Santosh Biswas, and Sukumar Nandi. Intrusion
detection system for PS-Poll DoS attack in 802.11 networks using real time discrete
event system. IEEE/CAA Journal of Automatica Sinica, 4(4):792–808, 2017. ISSN
2329-9274. Conference Name: IEEE/CAA Journal of Automatica Sinica.

[17] Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric
approximation via coresets. Combinatorial and Computational Geometry, 52, 2005.

[18] Azim Ahmadzadeh and Berkay Aydin. Multivariate Timeseries Feature Ex-
traction on SWAN Data Benchmark (SWAN_Features), 2020. URL https:
//github.com/charlespwd/project-title. GSU Data Mining Lab, Bit-
bucket repository.

[19] Open Charge Alliance. Open charge point protocol. https://www.
openchargealliance.org/protocols/, 2015. Accessed: 2023-05-07.

[20] Wi-Fi Alliance. WPA3 Specification, 2020. Version 3.0.

[21] Mashael AlSabah and Ian Goldberg. Performance and security improvements for
tor: A survey. ACM Computing Surveys (CSUR), 49(2):1–36, 2016.

[22] Riyad Alshammari and A Nur Zincir-Heywood. A flow based approach for ssh
traffic detection. In 2007 IEEE int. conf. on systems, man and cybernetics, pages
296–301. IEEE, 2007.

[23] Riyad Alshammari and A Nur Zincir-Heywood. Machine learning based encrypted
traffic classification: Identifying ssh and skype. In 2009 IEEE symposium on
computational intelligence for security and defense applications, pages 1–8. IEEE,
2009.

162

https://www.ietf.org/rfc/rfc7011.txt
https://www.ietf.org/rfc/rfc7011.txt
http://archive.ics.uci.edu/ml
https://wiki.wireshark.org/CaptureSetup/WLAN
https://wiki.wireshark.org/CaptureSetup/WLAN
https://github.com/charlespwd/project-title
https://github.com/charlespwd/project-title
https://www.openchargealliance.org/protocols/
https://www.openchargealliance.org/protocols/


[24] Riyad Alshammari and A Nur Zincir-Heywood. A preliminary performance com-
parison of two feature sets for encrypted traffic classification. In Proc. of the
Int. Workshop on Computational Intelligence in Security for Information Systems
CISIS’08, pages 203–210. Springer, 2009.

[25] Riyad Alshammari and A Nur Zincir-Heywood. An investigation on the identifica-
tion of voip traffic: Case study on gtalk and skype. In 2010 Int. Conf. on Network
and Service Management, pages 310–313. IEEE, 2010.

[26] Riyad Alshammari and A Nur Zincir-Heywood. Can encrypted traffic be identified
without port numbers, ip addresses and payload inspection? Computer networks,
55(6):1326–1350, 2011.

[27] Riyad Alshammari, Peter I Lichodzijewski, Malcolm Heywood, and A Nur Zincir-
Heywood. Classifying ssh encrypted traffic with minimum packet header features
using genetic programming. In Proc. of the 11th Annual Conf. Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers, pages
2539–2546, 2009.

[28] Sara A Althubiti, Eric Marcell Jones, and Kaushik Roy. Lstm for anomaly-based
network intrusion detection. In 2018 28th International telecommunication networks
and applications conference (ITNAC), pages 1–3. IEEE, 2018.

[29] Samaneh Aminikhanghahi and Diane J Cook. A survey of methods for time series
change point detection. Knowledge and information systems, 51(2):339–367, 2017.

[30] Blake Anderson and David McGrew. Machine learning for encrypted malware
traffic classification: Accounting for noisy labels and non-stationarity. In Proc.
of the 23rd ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining,
pages 1723–1732, 2017. ISBN 978-1-4503-4887-4.

[31] Blake Anderson and David A. McGrew. Identifying encrypted malware traffic with
contextual flow data. In Proceedings of the 2016 ACM Workshop on Artificial
Intelligence and Security, AISec@CCS 2016, Vienna, Austria, October 28, 2016,
pages 35–46, 2016.

[32] F. Angiulli and F. Fassetti. Detecting distance-based outliers in streams of data.
In Proc. of the 16th ACM Conf. on Information and Knowledge Management,
CIKM’07, pages 811–820, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
803-9. doi: 10.1145/1321440.1321552.

[33] Rafal A. Angryk, Petrus C. Martens, Berkay Aydin, Dustin Kempton, Sushant S.
Mahajan, Sunitha Basodi, Azim Ahmadzadeh, Xumin Cai, Soukaina Fi-
lali Boubrahimi, Shah Muhammad Hamdi, Michael A. Schuh, and Manolis K.
Georgoulis. Multivariate time series dataset for space weather data analytics.
Scientific Data, 7(227), 2020.

163



[34] Daniel W. Apley and Jingyu Zhu. Visualizing the Effects of Predictor Variables in
Black Box Supervised Learning Models. arXiv:1612.08468 [stat], December 2016.
arXiv: 1612.08468.

[35] Jacob Appelbaum, Marsh Ray, Karl Koscher, and Ian Finder. vpwns: Virtual
pwned networks. In 2nd USENIX Workshop on Free and Open Communications
on the Internet. USENIX Association, 2012.

[36] Marcel Armour and Bertram Poettering. Subverting decryption in AEAD. Technical
Report 987, 2019. URL http://eprint.iacr.org/2019/987.

[37] Daniel J Arndt and A Nur Zincir-Heywood. A comparison of three machine learning
techniques for encrypted network traffic analysis. In 2011 IEEE Symposium on
Computational Intelligence for Security and Defense Applications (CISDA), pages
107–114. IEEE, 2011.

[38] Stefan Axelsson. The base-rate fallacy and its implications for the difficulty of
intrusion detection. In Proceedings of the 6th ACM Conference on Computer and
Communications Security, CCS ’99, pages 1–7, 1999.

[39] Md Ahsan Ayub, William A Johnson, Douglas A Talbert, and Ambareen Siraj.
Model evasion attack on intrusion detection systems using adversarial machine
learning. In 2020 54th annual conference on information sciences and systems
(CISS), pages 1–6. IEEE, 2020.

[40] Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable k-means clustering
via lightweight coresets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’18, page 1119–1127, New
York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520.

[41] Maximilian Bachl. Machine learning methods for communication networks: Char-
acterization and analysis of selected use cases. PhD thesis, TU Wien, 2021.

[42] Maximilian Bachl, Alexander Hartl, Joachim Fabini, and Tanja Zseby. Walling Up
Backdoors in Intrusion Detection Systems. In Big-DAMA ’19, pages 8–13, Orlando,
FL, USA, 2019. ACM.

[43] Lamiaa Basyoni, Noora Fetais, Aiman Erbad, Amr Mohamed, and Mohsen Guizani.
Traffic analysis attacks on tor: a survey. In 2020 IEEE Int. Conf. on Informatics,
IoT, and Enabling Technologies (ICIoT), pages 183–188. IEEE, 2020.

[44] David M. Beazley. SWIG: An easy to use tool for integrating scripting languages
with C and C++. In Proceedings of the 4th Conference on USENIX Tcl/Tk
Workshop, 1996 - Volume 4, TCLTK’96, page 15, USA, 1996. USENIX Association.

[45] M. Bellare, P. Rogaway, and D. Wagner. EAX: A conventional authenticated-
encryption mode. Technical Report 069, 2003. URL https://eprint.iacr.
org/2003/069.

164

http://eprint.iacr.org/2019/987
https://eprint.iacr.org/2003/069
https://eprint.iacr.org/2003/069


[46] Mihir Bellare and Björn Tackmann. The multi-user security of authenticated
encryption: AES-GCM in TLS 1.3. In Advances in Cryptology – CRYPTO 2016,
pages 247–276, Berlin, Heidelberg, 2016. Springer. ISBN 978-3-662-53018-4. doi:
10.1007/978-3-662-53018-4_10.

[47] Mihir Bellare, Kenneth Paterson, and Phillip Rogaway. Security of symmetric
encryption against mass surveillance. Technical Report 438, 2014. URL http:
//eprint.iacr.org/2014/438.

[48] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the
state: Strongly undetectable algorithm-substitution attacks. Technical Report 808,
2015. URL http://eprint.iacr.org/2015/808.

[49] M. Bhuyan, D. Bhattacharyya, and J. Kalita. Network anomaly detection: Methods,
systems and tools. Communications Surveys Tutorials, IEEE, PP(99):1–34, 2013.

[50] M. Bhuyan, D.K. Bhattacharyya, and J.K. Kalita. A multi-step outlier-based
anomaly detection approach to network-wide traffic. Information Sci., 348:243–271,
2016.

[51] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. Moa:
Massive online analysis. Journal of Machine Learning Research, 11:1601–1604,
2010.

[52] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio Roli.
Bagging classifiers for fighting poisoning attacks in adversarial environments. In
10th Int’l Workshop on Multiple Classifier Systems, volume 6713 of LNCS, pages
350–359, Naples, Italy, 2011. Springer.

[53] Jens-Matthias Bohli and Rainer Steinwandt. On subliminal channels in deterministic
signature schemes. In International Conference on Information Security and
Cryptology, pages 182–194. Springer, 2004.

[54] Jens-Matthias Bohli and Rainer Steinwandt. On subliminal channels in deterministic
signature schemes. In Information Security and Cryptology – ICISC 2004, pages
182–194, Berlin, Heidelberg, 2005. Springer. ISBN 978-3-540-32083-8. doi: 10.1007/
11496618_14.

[55] Jens-Matthias Bohli, María Isabel González Vasco, and Rainer Steinwandt. A
subliminal-free variant of ecdsa. In International Workshop on Information Hiding,
pages 375–387. Springer, 2006.

[56] Jens-Matthias Bohli, María Isabel González Vasco, and Rainer Steinwandt.
A subliminal-free variant of ECDSA. In Information Hiding, pages 375–387,
Berlin, Heidelberg, 2007. Springer. ISBN 978-3-540-74124-4. doi: 10.1007/
978-3-540-74124-4_25.

165

http://eprint.iacr.org/2014/438
http://eprint.iacr.org/2014/438
http://eprint.iacr.org/2015/808


[57] Kendrick Boyd, Kevin H. Eng, and C. David Page. Area under the precision-recall
curve: Point estimates and confidence intervals. In Machine Learning and Knowledge
Discovery in Databases, pages 451–466, Berlin, Heidelberg, 2013. Springer. ISBN
978-3-642-40994-3.

[58] M. M. Breunig, H.-P. Kriegel, et al. LOF: identifying density-based local outliers.
In Proc. of the 2000 ACM SIGMOD Int. Conf. on Management of data, pages
93–104, 2000.

[59] A. L. Buczak and E. Guven. A survey of data mining and machine learning methods
for cyber security intrusion detection. IEEE Communications Surveys Tutorials,
18(2):1153–1176, Secondquarter 2016.

[60] Thanh Bui, Siddharth Rao, Markku Antikainen, and Tuomas Aura. Client-side
vulnerabilities in commercial vpns. In Nordic Conference on Secure IT Systems,
pages 103–119. Springer, 2019.

[61] Hanno Böck, Aaron Zauner, Sean Devlin, Juraj Somorovsky, and Philipp Jovanovic.
Nonce-disrespecting adversaries: Practical forgery attacks on GCM in TLS. Tech-
nical Report 475, 2016. URL http://eprint.iacr.org/2016/475.

[62] CAIDA. The CAIDA UCSD network telescope ”patch tuesday“ dataset.
http://www.caida.org/data/passive/telescope-patch-tuesday_
dataset.xml. Accessed: 2023-05-07.

[63] G. O. Campos, A. Zimek, et al. On the evaluation of unsupervised outlier detection:
measures, datasets, and an empirical study. Data Mining and Knowledge Discovery,
30(4):891–927, 2016. ISSN 1573-756X. doi: 10.1007/s10618-015-0444-8.

[64] Zigang Cao, Gang Xiong, Yong Zhao, Zhenzhen Li, and Li Guo. A survey on
encrypted traffic classification. In Int. Conf. on Applications and Techniques in
Information Security, pages 73–81. Springer, 2014.

[65] Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural
Networks. In S&P, pages 39–57. IEEE, May 2017.

[66] Chun-Hao Chang, Ladislav Rampasek, and Anna Goldenberg. Dropout feature
ranking for deep learning models. arXiv:1712.08645, 2017.

[67] Chris Chatfield. The analysis of time series: An introduction. Chapman and
Hall/CRC, London, UK, 2003.

[68] Hongge Chen, Huan Zhang, Duane Boning, and Cho-Jui Hsieh. Robust Decision
Trees Against Adversarial Examples. In Proceedings of the 36th International
Conference on Machine Learning, pages 1122–1131, Long Beach, CA, 2019. PMLR.

166

http://eprint.iacr.org/2016/475
http://www.caida.org/data/passive/telescope-patch-tuesday_dataset.xml
http://www.caida.org/data/passive/telescope-patch-tuesday_dataset.xml


[69] Kenjiro Cho, Koushirou Mitsuya, and Akira Kato. Traffic data repository at the
WIDE project. In 2000 USENIX Annual Technical Conference (USENIX ATC 00),
2000.

[70] P. Ciaccia, M. Patella, et al. M-tree: An efficient access method for similarity
search in metric spaces. In Proc. of the 23rd VLDB conference, pages 426–435,
1997.

[71] Graham Cormode and Shan Muthukrishnan. An improved data stream summary:
the count-min sketch and its applications. Journal of Algorithms, 55(1):58–75,
2005.

[72] Nick Craswell. Precision at n, pages 2127–2128. Springer US, Boston, MA, 2009.
ISBN 978-0-387-39940-9.

[73] Howard David, Eugene Gorbatov, Ulf R Hanebutte, Rahul Khanna, and Christian
Le. Rapl: Memory power estimation and capping. In 2010 ACM/IEEE International
Symposium on Low-Power Electronics and Design (ISLPED), pages 189–194. IEEE,
2010.

[74] Amit Dhurandhar, Pin-Yu Chen, Karthikeyan Shanmugam, Tejaswini Pedapati,
Avinash Balakrishnan, and Ruchir Puri. Model Agnostic Contrastive Explanations
for Machine Learning Classification Models. 2018.

[75] Qingkuan Dong and Guozhen Xiao. A subliminal-free variant of ecdsa using
interactive protocol. In 2010 International Conference on E-Product E-Service and
E-Entertainment, pages 1–3. IEEE, 2010.

[76] Zakir Durumeric, Michael Bailey, and J. Alex Halderman. An internet-wide view of
internet-wide scanning. In Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC’14, pages 65–78, Berkeley, CA, USA, 2014. USENIX Association.

[77] Morris Dworkin. Recommendation for block cipher modes of operation: Galois/-
counter mode (GCM) and GMAC. Technical Report NIST Special Publication (SP)
800-38D, National Institute of Standards and Technology, November 2007. URL
https://csrc.nist.gov/publications/detail/sp/800-38d/final.

[78] Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[79] Gregory G Enas and Sung C Choi. Choice of the smoothing parameter and efficiency
of k-nearest neighbor classification. Computers & Mathematics with Applications,
12(2, Part A):235–244, 1986.

[80] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion
detection dataset: the cicids2017 case study. In 2021 IEEE Security and Privacy
Workshops (SPW), pages 7–12. IEEE, 2021.

167

https://csrc.nist.gov/publications/detail/sp/800-38d/final


[81] Floriana Esposito, Donato Malerba, Giovanni Semeraro, and J. Kay. A comparative
analysis of methods for pruning decision trees. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(5):476–491, May 1997.

[82] Joachim Fabini, Tanja Zseby, and Michael Hirschbichler. Representative delay
measurements (rdm): Facing the challenge of modern networks. EAI Endorsed
Transactions on Creative Technologies, 2(6):e5, 2015.

[83] C. Fachkha, E. Bou-Harb, and M. Debbabi. Towards a forecasting model for
distributed denial of service activities. In 2013 IEEE 12th International Symposium
on Network Computing and Applications, pages 110–117, Aug 2013.

[84] Niels Ferguson. Authentication weaknesses in GCM. Comments submitted to NIST
Modes of Operation Process, pages 1–19, 2005.

[85] Daniel C. Ferreira, Félix Iglesias Vázquez, Gernot Vormayr, Maximilian Bachl,
and Tanja Zseby. A meta-analysis approach for feature selection in network traffic
research. In Proc. of the Reproducibility Workshop, Reproducibility ’17, pages
17–20. ACM, 2017. ISBN 978-1-4503-5060-0.

[86] Daniel C. Ferreira, Maximilian Bachl, Gernot Vormayr, Félix Iglesias, and Tanja
Zseby. Curated research on network traffic analysis, November 2018.

[87] Alejandro Flores-Velazco and David M. Mount. Coresets for the nearest-neighbor
rule. In 28th Annual European Symposium on Algorithms (ESA 2020), Dagstuhl,
Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[88] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the Key Scheduling
Algorithm of RC4. In Selected Areas in Cryptography, Lecture Notes in Computer
Science, pages 1–24, Berlin, Heidelberg, 2001. Springer. ISBN 978-3-540-45537-0.

[89] P. Fournier-Viger. An introduction to periodic pattern mining, July
2016. URL http://data-mining.philippe-fournier-viger.com/
an-introduction-to-the-discovery-of-periodic-patterns-in-data/.

[90] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing Koh,
and Rincy Thomas. A survey of sequential pattern mining. Data Science and
Pattern Recognition, 1(1):54–77, 2017.

[91] Sheila Frankel and Suresh Krishnan. IP Security (IPsec) and Internet Key Exchange
(IKE) Document Roadmap. RFC 6071, RFC Editor, February 2011. URL http:
//www.rfc-editor.org/rfc/rfc6071. Num Pages: 63.

[92] Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting
Machine. The Annals of Statistics, 29(5):1189–1232, 2001.

[93] Herman Galteland and Kristian Gjøsteen. Subliminal channels in post-quantum
digital signature schemes. Cryptology ePrint Archive, 2019.

168

http://data-mining.philippe-fournier-viger.com/an-introduction-to-the-discovery-of-periodic-patterns-in-data/
http://data-mining.philippe-fournier-viger.com/an-introduction-to-the-discovery-of-periodic-patterns-in-data/
http://www.rfc-editor.org/rfc/rfc6071
http://www.rfc-editor.org/rfc/rfc6071


[94] Yansong Gao, Bao Gia Doan, Zhi Zhang, Siqi Ma, Jiliang Zhang, Anmin Fu, Surya
Nepal, and Hyoungshick Kim. Backdoor attacks and countermeasures on deep
learning: A comprehensive review. arXiv preprint arXiv:2007.10760, 2020.

[95] P. García-Teodoro, J. Díaz-Verdejo, G. Maciá-Fernández, and E. Vázquez. Anomaly-
based network intrusion detection: Techniques, systems and challenges. Computers
& Security, 28(1):18 – 28, 2009.

[96] Amirhossein Gharib, Iman Sharafaldin, Arash Habibi Lashkari, and Ali Ghor-
bani. An evaluation framework for intrusion detection dataset. In International
Conference on Information Science and Security (ICISS), pages 1–6, 12 2016.

[97] Amirhossein Gharib, Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani.
An Evaluation Framework for Intrusion Detection Dataset. 2016 International
Conference on Information Science and Security (ICISS), pages 1–6, 2016.

[98] Boris Ginzburg and Alex Kesselman. Performance analysis of A-MPDU and A-
MSDU aggregation in IEEE 802.11n. In 2007 IEEE Sarnoff Symposium, pages 1–5,
April 2007.

[99] K. Goeschel. Reducing false positives in intrusion detection systems using data-
mining techniques utilizing support vector machines, decision trees, and naive bayes
for off-line analysis. In SoutheastCon 2016, pages 1–6, March 2016.

[100] P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita. A survey of outlier
detection methods in network anomaly identification. The Computer Journal, 54
(4):570–588, 2011.

[101] Markus Goldstein and Andreas Dengel. Histogram-based outlier score (HBOS): A
fast unsupervised anomaly detection algorithm. KI 2012: Advances in artificial
intelligence: 35th Annual German Conference on AI, pages 59–63, 2012.

[102] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. BadNets: Identifying
Vulnerabilities in the Machine Learning Model Supply Chain. arXiv:1708.06733
[cs], August 2017. arXiv: 1708.06733.

[103] S. Gueron, A. Langley, and Y. Lindell. Aes-gcm-siv: Nonce misuse-resistant
authenticated encryption. RFC 8452, RFC Editor, April 2019. URL http:
//www.rfc-editor.org/rfc/rfc8452.txt.

[104] Shay Gueron and Vlad Krasnov. The fragility of AES-GCM authentication algo-
rithm. In 2014 11th International Conference on Information Technology: New
Generations, pages 333–337, April 2014. doi: 10.1109/ITNG.2014.31.

[105] Shay Gueron and Yehuda Lindell. GCM-SIV: Full nonce misuse-resistant authenti-
cated encryption at under one cycle per byte. Technical Report 102, 2015. URL
http://eprint.iacr.org/2015/102.

169

http://www.rfc-editor.org/rfc/rfc8452.txt
http://www.rfc-editor.org/rfc/rfc8452.txt
http://eprint.iacr.org/2015/102


[106] Shay Gueron, Adam Langley, and Yehuda Lindell. AES-GCM-SIV: Specification
and analysis. Technical Report 168, 2017. URL http://eprint.iacr.org/
2017/168.

[107] S. Guha, N. Mishra, et al. Robust random cut forest based anomaly detection on
streams. In Proc. of The 33rd Int. Conf. on Machine Learning, volume 48 of Proc.
of Machine Learning Research, pages 2712–2721, New York, USA, 2016. PMLR.
URL http://proceedings.mlr.press/v48/guha16.html.

[108] Sudipto Guha, Nina Mishra, Gourav Roy, and Okke Schrijvers. Robust random cut
forest based anomaly detection on streams. In Maria Florina Balcan and Kilian Q.
Weinberger, editors, Proceedings of The 33rd International Conference on Machine
Learning, volume 48 of Proceedings of Machine Learning Research, pages 2712–2721,
New York, New York, USA, 20–22 Jun 2016. PMLR.

[109] Aleksey Gurtovoy and David Abrahams. The boost C++ metaprogramming library.
page 22, 2002.

[110] Peter Hall, Byeong U Park, Richard J Samworth, et al. Choice of neighbor order
in nearest-neighbor classification. The Annals of Statistics, 36(5):2135–2152, 2008.

[111] James Douglas Hamilton. Time series analysis. Princeton university press, Prince-
ton, NJ, USA, 2020.

[112] Helena Handschuh and Bart Preneel. Key-recovery attacks on universal hash
function based MAC algorithms. In Advances in Cryptology – CRYPTO 2008,
pages 144–161, Berlin, Heidelberg, 2008. Springer. ISBN 978-3-540-85174-5. doi:
10.1007/978-3-540-85174-5_9.

[113] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van
Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe,
Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren
Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array
programming with NumPy. Nature, 585(7825):357–362, September 2020.

[114] Alexander Hartl, Robert Annessi, and Tanja Zseby. A subliminal channel in
EdDSA: Information leakage with high-speed signatures. In Proceedings of the 2017
International Workshop on Managing Insider Security Threats, MIST ’17, pages
67–78, New York, NY, USA, October 2017. Association for Computing Machinery.
ISBN 978-1-4503-5177-5. doi: 10.1145/3139923.3139925.

[115] Alexander Hartl, Robert Annessi, and Tanja Zseby. Subliminal channels in high-
speed signatures. J. Wirel. Mob. Networks Ubiquitous Comput. Dependable Appl.,
9(1):30–53, 2018.

170

http://eprint.iacr.org/2017/168
http://eprint.iacr.org/2017/168
http://proceedings.mlr.press/v48/guha16.html


[116] Alexander Hartl, Maximilian Bachl, Joachim Fabini, and Tanja Zseby. Explain-
ability and adversarial robustness for RNNs. In 2020 IEEE Sixth International
Conference on Big Data Computing Service and Applications (BigDataService),
pages 148–156, New York, NY, USA, 2020. IEEE.

[117] Alexander Hartl, Félix Iglesias, and Tanja Zseby. SDOstream: Low-density models
for streaming outlier detection. In ESANN 2020 proceedings, pages 661–666, 2020.

[118] Alexander Hartl, Joachim Fabini, Christoph Roschger, Peter Eder-Neuhauser,
Marco Petrovic, Roman Tobler, and Tanja Zseby. Subverting counter mode en-
cryption for hidden communication in high-security infrastructures. In The 16th
International Conference on Availability, Reliability and Security, pages 1–11, 2021.

[119] Alexander Hartl, Joachim Fabini, and Tanja Zseby. Separating flows in encrypted
tunnel traffic. In 21st IEEE International Conference on Machine Learning and
Applications, pages 609–616. IEEE, 2022.

[120] Alexander Hartl, Félix Iglesias, and Tanja Zseby. dSalmon: High-Speed Anomaly
Detection for Evolving Multivariate Data Streams. In 16th EAI International
Conference on Performance Evaluation Methodologies and Tools. ACM, 2023.

[121] Mohammad J. Hashemi, Greg Cusack, and Eric Keller. Towards Evaluation of
NIDSs in Adversarial Setting. In Big-DAMA ’19, pages 14–21, Orlando, FL, USA,
2019. ACM. ISBN 978-1-4503-6999-2. doi: 10.1145/3359992.3366642.

[122] Douglas M. Hawkins. Identification of outliers, volume 11. Chapman and Hall
London ; New York, 1980.

[123] Viet Tung Hoang, Stefano Tessaro, and Aishwarya Thiruvengadam. The multi-user
security of GCM, revisited: Tight bounds for nonce randomization. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
CCS ’18, pages 1429–1440, New York, NY, USA, October 2018. Association for
Computing Machinery. ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3243816.

[124] Lawrence Hubert and Phipps Arabie. Comparing partitions. Journal of classifica-
tion, 2(1):193–218, 1985.

[125] Jonathan Huggins, Trevor Campbell, and Tamara Broderick. Coresets for scalable
bayesian logistic regression. Advances in Neural Information Processing Systems,
29:4080–4088, 2016.

[126] IEEE80211ax. 802.11ax Frame Aggregation Enhancements, December 2020.
URL https://www.extremenetworks.com/extreme-networks-blog/
802-11ax-frame-aggregation-enhancements/. Accessed: 2023-05-07.

[127] F. Iglesias, T. Zseby, et al. Outlier detection based on low density models. In 2018
IEEE Int. Conf. on Data Mining Workshops (ICDMW), pages 970–979, 2018. doi:
10.1109/ICDMW.2018.00140.

171

https://www.extremenetworks.com/extreme-networks-blog/802-11ax-frame-aggregation-enhancements/
https://www.extremenetworks.com/extreme-networks-blog/802-11ax-frame-aggregation-enhancements/


[128] F. Iglesias, T. Zseby, et al. MDCGen: Multidimensional Dataset Generator for
Clustering. Journal of Classification, 36:599–618, 2019.

[129] Félix Iglesias and Tanja Zseby. Time-activity footprints in ip traffic. Comput.
Netw., 107(P1):64–75, October 2016.

[130] Félix Iglesias and Tanja Zseby. Pattern discovery in internet background radiation.
IEEE Transactions on Big Data, 5(4):467–480, 2017.

[131] Félix Iglesias, Alexander Hartl, Tanja Zseby, and Arthur Zimek. Are network
attacks outliers? a study of space representations and unsupervised algorithms.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 159–175. Springer, 2019.

[132] Félix Iglesias and Tanja Zseby. Entropy-Based Characterization of Internet Back-
ground Radiation. Entropy, 17(1):74–101, January 2015.

[133] Félix Iglesias Vázquez, Tanja Zseby, and Arthur Zimek. Outlier detection based
on low density models. In 2018 IEEE International Conference on Data Mining
Workshops, ICDM Workshops, Singapore, Singapore, November 17-20, 2018, pages
970–979, 2018.

[134] K. Igoe and J. Solinas. Aes Galois counter mode for the secure shell transport layer
protocol. RFC 5647, RFC Editor, August 2009. URL http://www.rfc-editor.
org/rfc/rfc5647.txt.

[135] Tetsu Iwata, Keisuke Ohashi, and Kazuhiko Minematsu. Breaking and repairing
GCM security proofs. In Advances in Cryptology – CRYPTO 2012, pages 31–
49, Berlin, Heidelberg, 2012. Springer. ISBN 978-3-642-32009-5. doi: 10.1007/
978-3-642-32009-5_3.

[136] Ulf Johansson and Patrick Gabrielsson. Are traditional neural networks well-
calibrated? In 2019 Int. Joint Conf. on Neural Networks (IJCNN), pages 1–8,
2019.

[137] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital
signature algorithm (ecdsa). International journal of information security, 1(1):
36–63, 2001.

[138] Antoine Joux. Authentication failures in NIST version of GCM. Comments
submitted to NIST Modes of Operation Process, page 3, 2006.

[139] Ishan Karunanayake, Nadeem Ahmed, Robert Malaney, Rafiqul Islam, and Sanjay K
Jha. De-anonymisation attacks on tor: A survey. IEEE Communications Surveys
& Tutorials, 23(4):2324–2350, 2021.

[140] R. Kaur and M. Singh. A survey on zero-day polymorphic worm detection techniques.
IEEE Communications Surveys Tutorials, 16(3):1520–1549, Third 2014.

172

http://www.rfc-editor.org/rfc/rfc5647.txt
http://www.rfc-editor.org/rfc/rfc5647.txt


[141] Stephen Kent. IP Authentication Header. RFC 4302, RFC Editor, December 2005.
URL http://www.rfc-editor.org/rfc/rfc4302. Num Pages: 34.

[142] Stephen Kent. IP Encapsulating Security Payload (ESP). RFC 4303, RFC Editor,
December 2005. URL http://www.rfc-editor.org/rfc/rfc4303. Num
Pages: 44.

[143] Ansam Khraisat, Iqbal Gondal, Peter Vamplew, and Joarder Kamruzzaman. Survey
of intrusion detection systems: techniques, datasets and challenges. Cybersecurity,
2(1):1–22, 2019.

[144] Aechan Kim, Mohyun Park, and Dong Hoon Lee. Ai-ids: Application of deep
learning to real-time web intrusion detection. IEEE Access, 8:70245–70261, 2020.

[145] Tadayoshi Kohno, John Viega, and Doug Whiting. CWC: A high-performance
conventional authenticated encryption mode. Technical Report 106, 2003. URL
https://eprint.iacr.org/2003/106.

[146] M. Kontaki, A. Gounaris, et al. Continuous monitoring of distance-based outliers
over data streams. In IEEE 27th Int. Conf. on Data Engineering, pages 135–146,
2011. doi: 10.1109/ICDE.2011.5767923.

[147] Bjoern Krollner, Bruce J Vanstone, and Gavin R Finnie. Financial time series
forecasting with machine learning techniques: A survey. In ESANN 2010 proceedings,
2010.

[148] Yuichi Kumano, Shingo Ata, Nobuyuki Nakamura, Yoshihiro Nakahira, and Ikuo
Oka. Towards real-time processing for application identification of encrypted traffic.
In 2014 Int. Conf. on Computing, Networking and Communications (ICNC), pages
136–140. IEEE, 2014.

[149] Robin Kwant, Tanja Lange, and Kimberley Thissen. Lattice klepto. In International
Conference on Selected Areas in Cryptography, pages 336–354. Springer, 2017.

[150] Himabindu Lakkaraju and Cynthia Rudin. Learning Cost-Effective and Inter-
pretable Treatment Regimes. In Proceedings of the 20th International Conference
on Artificial Intelligence and Statistics, pages 166–175, Fort Lauderdale, FL, USA,
20–22 Apr 2017. PMLR.

[151] Nikolay Laptev, Saeed Amizadeh, and Ian Flint. Generic and scalable framework
for automated time-series anomaly detection. In Proceedings of the 21th ACM
SIGKDD international conference on knowledge discovery and data mining, pages
1939–1947, 2015.

[152] Yiming Li, Yong Jiang, Zhifeng Li, and Shu-Tao Xia. Backdoor learning: A survey.
IEEE Transactions on Neural Networks and Learning Systems, 2022.

173

http://www.rfc-editor.org/rfc/rfc4302
http://www.rfc-editor.org/rfc/rfc4303
https://eprint.iacr.org/2003/106


[153] T Warren Liao. Clustering of time series data—a survey. Pattern recognition, 38
(11):1857–1874, 2005.

[154] Yeon-sup Lim, Hyun-chul Kim, Jiwoong Jeong, Chong-kwon Kim, Ted "Taekyoung"
Kwon, and Yanghee Choi. Internet traffic classification demystified: On the sources
of the discriminative power. In Proc. of the 6th Int. Conf., Co-NEXT ’10, pages
9:1–9:12, New York, NY, USA, 2010. ACM.

[155] F. T. Liu, K. M. Ting, and Z.-H. Zhou. Isolation-based anomaly detection. 6(1):
3:1–39, 2012. doi: 10.1145/2133360.2133363.

[156] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. Isolation forest. In 2008 eighth
ieee international conference on data mining, pages 413–422. IEEE, 2008.

[157] Kang Liu, Brendan Dolan-Gavitt, and Siddharth Garg. Fine-Pruning: Defending
Against Backdooring Attacks on Deep Neural Networks. arXiv:1805.12185 [cs],
May 2018. arXiv: 1805.12185.

[158] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems 30, pages
4765–4774. Curran Associates, Inc., 2017.

[159] Richard G Lyons. Understanding digital signal processing, 3rd edition. Pearson,
London, UK, 2011.

[160] G. Mahalakshmi, S. Sridevi, and S. Rajaram. A survey on forecasting of time series
data. In 2016 International Conference on Computing Technologies and Intelligent
Data Engineering (ICCTIDE’16), pages 1–8, 2016.

[161] E. Manzoor, H. Lamba, et al. xStream: Outlier detection in feature-evolving data
streams. In 24th ACM SIGKDD Int. Conf. on Know. Discovery and Data Mining,
2018.

[162] David McGrew and John Viega. The galois/counter mode of operation (gcm).
Submission to NIST Modes of Operation Process, page 44, 2004.

[163] David A. McGrew and John Viega. The Security and Performance of the Galois/-
Counter Mode of Operation (Full Version). Technical Report 193, 2004. URL
http://eprint.iacr.org/2004/193.

[164] Fares Meghdouri. Datasets Preprocessing, 2021. URL https://github.com/
CN-TU/Datasets-preprocessing. GitHub repository.

[165] Fares Meghdouri, Tanja Zseby, and Félix Iglesias. Analysis of Lightweight Feature
Vectors for Attack Detection in Network Traffic. Applied Sciences, 8(11):2196,
November 2018.

174

http://eprint.iacr.org/2004/193
https://github.com/CN-TU/Datasets-preprocessing
https://github.com/CN-TU/Datasets-preprocessing


[166] Fares Meghdouri, Tanja Zseby, and Felix Iglesias Vazquez. Analysis of lightweight
feature vectors for attack detection in network traffic. Applied Sciences, 8(11),
2018.

[167] Fares Meghdouri, Félix Iglesias Vázquez, and Tanja Zseby. Shedding light in the
tunnel: Counting flows in encrypted network traffic. In 2021 Int. Conf. on Data
Mining Workshops (ICDMW), pages 798–804. IEEE, 2021.

[168] Matthias Minderer, Josip Djolonga, Rob Romijnders, Frances Hubis, Xiaohua Zhai,
Neil Houlsby, Dustin Tran, and Mario Lucic. Revisiting the calibration of modern
neural networks. Advances in Neural Information Processing Systems, 34, 2021.

[169] Christoph Molnar. Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. 2019.

[170] Nour Moustafa and Jill Slay. UNSW-NB15: a comprehensive data set for network
intrusion detection systems (UNSW-NB15 network data set). In MilCIS, pages
1–6, November 2015.

[171] Nour Moustafa and Jill Slay. The evaluation of network anomaly detection systems:
Statistical analysis of the UNSW-NB15 data set and the comparison with the
KDD99 data set. Inf. Sec. J.: A Global Perspective, 25(1-3):18–31, April 2016.
ISSN 1939-3555.

[172] Pramita Sree Muhuri, Prosenjit Chatterjee, Xiaohong Yuan, Kaushik Roy, and
Albert Esterline. Using a long short-term memory recurrent neural network (lstm-
rnn) to classify network attacks. Information, 11(5):243, 2020.

[173] Hoang Vu Nguyen and Vivekanand Gopalkrishnan. Feature extraction for outlier
detection in high-dimensional spaces. In Huan Liu, Hiroshi Motoda, Rudy Setiono,
and Zheng Zhao, editors, Proceedings of the Fourth International Workshop on
Feature Selection in Data Mining, volume 10 of Proceedings of Machine Learning
Research, pages 66–75, Hyderabad, India, 21 Jun 2010. PMLR.

[174] Hoang Vu Nguyen, Hock Hee Ang, and Vivekanand Gopalkrishnan. Mining outliers
with ensemble of heterogeneous detectors on random subspaces. In International
Conference on Database Systems for Advanced Applications, pages 368–383, Berlin,
Heidelberg, 2010. Springer.

[175] Yohei Okada, Shingo Ata, Nobuyuki Nakamura, Yoshihiro Nakahira, and Ikuo Oka.
Application identification from encrypted traffic based on characteristic changes by
encryption. In 2011 IEEE Int. Workshop Technical Committee on Communications
Quality and Reliability (CQR), pages 1–6. IEEE, 2011.

[176] Julian D Olden and Donald A Jackson. Illuminating the “black box”: a ran-
domization approach for understanding variable contributions in artificial neural
networks. Ecological Modelling, 154(1):135–150, August 2002. ISSN 0304-3800. doi:
10.1016/S0304-3800(02)00064-9.

175



[177] Julian D Olden, Michael K Joy, and Russell G Death. An accurate comparison
of methods for quantifying variable importance in artificial neural networks using
simulated data. Ecological Modelling, 178(3):389–397, November 2004. ISSN
0304-3800. doi: 10.1016/j.ecolmodel.2004.03.013.

[178] Adam Paszke, Sam Gross, Soumith Chintala, et al. Automatic differentiation in
PyTorch. page 4, 2017.

[179] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[180] M. I. Petrovskiy. Outlier detection algorithms in data mining systems. Programming
and Computer Software, 29(4):228–237, Jul 2003.

[181] Tomáš Pevný. Loda: Lightweight on-line detector of anomalies. Machine Learning,
102(2):275–304, February 2016.

[182] D. M. W. Powers. Evaluation: From precision, recall and f-measure to roc.,
informedness, markedness & correlation. Journal of Machine Learning Technologies,
2(1):37–63, 2011.

[183] Huming Qiu, Hua Ma, Zhi Zhang, Alsharif Abuadbba, Wei Kang, Anmin Fu,
and Yansong Gao. Towards a critical evaluation of robustness for deep learning
backdoor countermeasures. arXiv preprint arXiv:2204.06273, 2022.

[184] Michael O Rabin. Digitalized signatures and public-key functions as intractable
as factorization. Technical report, Massachusetts Inst of Tech Cambridge Lab for
Computer Science, 1979.

[185] S. Ramaswamy, R. Rastogi, and K. Shim. Efficient algorithms for mining outliers
from large data sets. pages 427–438, 2000.

[186] E. Rescorla. The transport layer security (tls) protocol version 1.3. RFC 8446, RFC
Editor, August 2018. URL http://www.rfc-editor.org/rfc/rfc8446.
txt.

[187] Shahbaz Rezaei and Xin Liu. Deep learning for encrypted traffic classification: An
overview. IEEE communications magazine, 57(5):76–81, 2019.

[188] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why Should I Trust
You?": Explaining the Predictions of Any Classifier. In KDD, pages 1135–1144,
San Francisco, California, USA, 2016. ACM. ISBN 978-1-4503-4232-2. doi: 10.
1145/2939672.2939778.

176

http://www.rfc-editor.org/rfc/rfc8446.txt
http://www.rfc-editor.org/rfc/rfc8446.txt


[189] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for obtaining
digital signatures and public-key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

[190] Pieter Robyns, Peter Quax, and Wim Lamotte. Injection attacks on 802.11n
MAC frame aggregation. In Proc. of the 8th ACM Conf. on Security & Privacy in
Wireless and Mobile Networks, pages 1–11, New York, NY, USA, June 2015. ACM.
ISBN 978-1-4503-3623-9.

[191] Martin Roesch et al. Snort: Lightweight intrusion detection for networks. In Lisa,
volume 99, pages 229–238, 1999.

[192] James Rotton and James Frey. Air pollution, weather, and violent crimes: Con-
comitant time-series analysis of archival data. Journal of personality and social
psychology, 49(5):1207, 1985.

[193] Markku-Juhani O. Saarinen. Cycling attacks on GCM, GHASH and other
polynomial MACs and hashes. Technical Report 202, 2011. URL https:
//eprint.iacr.org/2011/202.

[194] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative
than the roc plot when evaluating binary classifiers on imbalanced datasets. PloS
one, 10(3):1–21, 2015.

[195] Saad Saleh, Junaid Qadir, and Muhammad U Ilyas. Shedding light on the dark
corners of the internet: A survey of tor research. Journal of Network and Computer
Applications, 114:1–28, 2018.

[196] J. Salowey, A. Choudhury, and D. McGrew. Aes Galois counter mode (gcm)
cipher suites for TLS. RFC 5288, RFC Editor, August 2008. URL http://www.
rfc-editor.org/rfc/rfc5288.txt.

[197] Nicholas I. Sapankevych and Ravi Sankar. Time series prediction using support
vector machines: A survey. IEEE Computational Intelligence Magazine, 4(2):24–38,
2009.

[198] Saket Sathe and Charu C. Aggarwal. Subspace outlier detection in linear time with
randomized hashing. In 2016 IEEE 16th International Conference on Data Mining
(ICDM), pages 459–468, 2016.

[199] Bruce Schneier, Matthew Fredrikson, Tadayoshi Kohno, and Thomas Ristenpart.
Surreptitiously weakening cryptographic systems. Technical Report 097, 2015. URL
http://eprint.iacr.org/2015/097.

[200] E. Schubert, A. Zimek, and H.-P. Kriegel. Local outlier detection reconsidered: a
generalized view on locality with applications to spatial, video, and network outlier
detection. 28(1):190–237, 2014. doi: 10.1007/s10618-012-0300-z.

177

https://eprint.iacr.org/2011/202
https://eprint.iacr.org/2011/202
http://www.rfc-editor.org/rfc/rfc5288.txt
http://www.rfc-editor.org/rfc/rfc5288.txt
http://eprint.iacr.org/2015/097


[201] Erich Schubert and Arthur Zimek. Elki: A large open-source library for data
analysis-elki release 0.7. 5" heidelberg". arXiv preprint arXiv:1902.03616, 2019.

[202] Lloyd S Shapley. A value for n-person games. Contributions to the Theory of
Games, 2(28):307–317, 1953.

[203] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward Generating
a New Intrusion Detection Dataset and Intrusion Traffic Characterization. In
ICISSP, pages 108–116, Funchal, Madeira, Portugal, 2018. SCITEPRESS.

[204] Ryan Sheatsley, Nicolas Papernot, Michael J Weisman, Gunjan Verma, and Patrick
McDaniel. Adversarial examples for network intrusion detection systems. Journal
of Computer Security, (Preprint):1–26, 2022.

[205] Reza Shokri et al. Bypassing backdoor detection algorithms in deep learning.
In 2020 IEEE European Symposium on Security and Privacy (EuroS&P), pages
175–183. IEEE, 2020.

[206] Jocelyn Sietsma. Neural net pruning-why and how. In Proceedings of the Inter-
national Conference on Neural Networks, pages 325–333, San Diego, CA, 1988.
IEEE.

[207] Gustavus J Simmons. The prisoners’ problem and the subliminal channel. In
Advances in Cryptology, pages 51–67. Springer, 1984.

[208] Gustavus J. Simmons. The subliminal channel and digital signatures. In Advances
in Cryptology, pages 364–378. Springer Berlin Heidelberg, April 1984. doi: 10.1007/
3-540-39757-4_25.

[209] Gustavus J Simmons. Subliminal communication is easy using the dsa. In Workshop
on the Theory and Application of of Cryptographic Techniques, pages 218–232.
Springer, 1993.

[210] Gustavus J Simmons. The history of subliminal channels. IEEE Journal on Selected
Areas in Communications, 16(4):452–462, 1998.

[211] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[212] StackExchange Cross Validated. Feature selection using deep learning?,
2016. URL https://stats.stackexchange.com/questions/250381/
feature-selection-using-deep-learning.

[213] StackExchange Cross Validated. neural networks - Variable importance in RNN
or LSTM, 2019. URL https://stats.stackexchange.com/questions/
191855/variable-importance-in-rnn-or-lstm.

178

http://jmlr.org/papers/v15/srivastava14a.html
https://stats.stackexchange.com/questions/250381/feature-selection-using-deep-learning
https://stats.stackexchange.com/questions/250381/feature-selection-using-deep-learning
https://stats.stackexchange.com/questions/191855/variable-importance-in-rnn-or-lstm
https://stats.stackexchange.com/questions/191855/variable-importance-in-rnn-or-lstm


[214] Guang-Lu Sun, Yibo Xue, Yingfei Dong, Dongsheng Wang, and Chenglong Li. An
novel hybrid method for effectively classifying encrypted traffic. In 2010 IEEE
Global Telecommunications Conference GLOBECOM 2010, pages 1–5. IEEE, 2010.

[215] Yifan Sun, Nicolas Bohm Agostini, Shi Dong, and David Kaeli. Summarizing cpu
and gpu design trends with product data. arXiv e-prints, 2020.

[216] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. Fast anomaly detection for
streaming data. In Twenty-Second International Joint Conference on Artificial
Intelligence, 2011.

[217] Martin Teuffenbach, Ewa Piatkowska, and Paul Smith. Subverting network intrusion
detection: Crafting adversarial examples accounting for domain-specific constraints.
In International Cross-Domain Conference for Machine Learning and Knowledge
Extraction, pages 301–320. Springer, 2020.

[218] Erik Tews and Martin Beck. Practical attacks against WEP and WPA. In Proc. of
the second ACM conf. on Wireless network security, pages 79–86, New York, NY,
USA, March 2009. ACM. ISBN 978-1-60558-460-7.

[219] Mathy Vanhoef and Frank Piessens. Practical verification of WPA-TKIP vulnera-
bilities. In Proc. of the 8th ACM SIGSAC symposium on Information, computer
and communications security, ASIA CCS ’13, pages 427–436, New York, NY, USA,
May 2013. ACM. ISBN 978-1-4503-1767-2.

[220] Mathy Vanhoef and Frank Piessens. Key Reinstallation Attacks: Forcing Nonce
Reuse in WPA2. In Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’17, pages 1313–1328, New York, NY, USA,
October 2017. ACM. ISBN 978-1-4503-4946-8.

[221] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey of methods
for encrypted traffic classification and analysis. Int. Journal of Network Management,
25(5):355–374, 2015.

[222] J. Viega and D. McGrew. The use of Galois/counter mode (gcm) in IPsec en-
capsulating security payload (esp). RFC 4106, RFC Editor, June 2005. URL
http://www.rfc-editor.org/rfc/rfc4106.txt.

[223] R Vinayakumar, KP Soman, and Prabaharan Poornachandran. Evaluation of
recurrent neural network and its variants for intrusion detection system (ids).
International Journal of Information System Modeling and Design (IJISMD), 8(3):
43–63, 2017.

[224] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson,

179

http://www.rfc-editor.org/rfc/rfc4106.txt


C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt,
and SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[225] Andrew J Viterbi. A personal history of the viterbi algorithm. IEEE Signal
Processing Magazine, 23(4):120–142, 2006.

[226] Alina Vlădutu, Dragoş Comăneci, and Ciprian Dobre. Internet traffic classification
based on flows’ statistical properties with machine learning. Int. Journal of Network
Management, 27(3):e1929–n/a, 2017.

[227] Gernot Vormayr, Joachim Fabini, and Tanja Zseby. Why are my flows different?
a tutorial on flow exporters. IEEE Communications Surveys & Tutorials, 22(3):
2064–2103, 2020.

[228] Stephen F Weng, Jenna Reps, Joe Kai, Jonathan M Garibaldi, and Nadeem Qureshi.
Can machine-learning improve cardiovascular risk prediction using routine clinical
data? PloS one, 12(4):1–14, 2017.

[229] Doug Whiting, Russ Housley, and Niels Ferguson. AES encryption & authentication
using CTR mode & CBC-MAC. Technical Report IEEE 802.11-02/001r0, January
2002. URL https://web.cs.ucdavis.edu/~rogaway/ocb/whf02.pdf.

[230] Nigel Williams, Sebastian Zander, and Grenville Armitage. A Preliminary Perfor-
mance Comparison of Five Machine Learning Algorithms for Practical IP Traffic
Flow Classification. SIGCOMM Comput. Commun. Rev., 36(5):5–16, October
2006.

[231] Nigel Williams, Sebastian Zander, and Grenville Armitage. A Preliminary Perfor-
mance Comparison of Five Machine Learning Algorithms for Practical IP Traffic
Flow Classification. SIGCOMM Comput. Commun. Rev., 36(5):5–16, October
2006.

[232] Thomas Wouters. Answer to “what is the maximum recursion depth in python, and
how to increase it?”, 2010. URL https://stackoverflow.com/a/3323013.
Stackoverflow discussion.

[233] D. Yang, E. Rundensteiner, et al. Neighbor-based pattern detection for windows
over streaming data. In Proc. of the 12th Int. Conf. on Extending Database Tech.:
Advances in Database Tech., EDBT’09, pages 529–540, New York, NY, USA, 2009.
ACM. ISBN 978-1-60558-422-5. doi: 10.1145/1516360.1516422.

[234] Selim F Yilmaz and Suleyman S Kozat. Pysad: A streaming anomaly detection
framework in python. arXiv preprint arXiv:2009.02572, 2020.

180

https://web.cs.ucdavis.edu/~rogaway/ocb/whf02.pdf
https://stackoverflow.com/a/3323013


[235] Chuanlong Yin, Yuefei Zhu, Jinlong Fei, and Xinzheng He. A deep learning
approach for intrusion detection using recurrent neural networks. Ieee Access, 5:
21954–21961, 2017.

[236] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Advances in Neural Information Processing
Systems 27, pages 3320–3328. MIT Press, 2014.

[237] William J Youden. Index for rating diagnostic tests. Cancer, 3(1):32–35, 1950.

[238] Adam Young and Moti Yung. The dark side of “black-box” cryptography or:
Should we trust capstone? In Advances in Cryptology — CRYPTO ’96, pages
89–103, Berlin, Heidelberg, 1996. Springer. ISBN 978-3-540-68697-2. doi: 10.1007/
3-540-68697-5_8.

[239] Adam Young and Moti Yung. Kleptography: Using cryptography against cryptog-
raphy. In Advances in Cryptology — EUROCRYPT ’97, pages 62–74, Berlin, Hei-
delberg, 1997. Springer. ISBN 978-3-540-69053-5. doi: 10.1007/3-540-69053-0_6.

[240] D. Zhang, K. Lee, and I. Lee. Periodic Pattern Mining for Spatio-Temporal
Trajectories: A Survey. In 2015 10th International Conference on Intelligent
Systems and Knowledge Engineering (ISKE), pages 306–313, New York, NY, USA,
November 2015. IEEE.

[241] Ethan Zhang and Yi Zhang. Average Precision, pages 192–193. Springer US,
Boston, MA, 2009. ISBN 978-0-387-39940-9.

[242] J. Zhang and M. Zulkernine. Anomaly based network intrusion detection with
unsupervised outlier detection. In 2006 IEEE International Conference on Com-
munications, volume 5, pages 2388–2393, 2006.

[243] Shuang Zhao, Jing Li, Jianmin Wang, Zhao Zhang, Lin Zhu, and Yong Zhang.
attackgan: Adversarial attack against black-box ids using generative adversarial
networks. Procedia Computer Science, 187:128–133, 2021.

[244] Xianfeng Zhao and Ning Li. Reversible watermarking with subliminal channel. In
International Workshop on Information Hiding, pages 118–131. Springer, 2008.

[245] Yue Zhao, Zain Nasrullah, and Zheng Li. Pyod: A python toolbox for scalable
outlier detection. Journal of Machine Learning Research, 20(96):1–7, 2019.

[246] A. Zimek and P. Filzmoser. There and back again: Outlier detection between
statistical reasoning and data mining algorithms. 8(6):e1280, 2018. doi: 10.1002/
widm.1280.

[247] Arthur Zimek, Matthew Gaudet, Ricardo J.G.B. Campello, and Jörg Sander.
Subsampling for efficient and effective unsupervised outlier detection ensembles.

181



In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’13, page 428–436, New York, NY, USA, 2013.
Association for Computing Machinery. ISBN 9781450321747.

182


	Abstract
	Kurzfassung
	Contents
	Publications
	Introduction
	Preface
	Motivation
	Research Questions
	Approach
	Contribution
	Structure

	Background
	Network Traffic Analysis
	Defining Flows
	Feature Extraction

	Network Intrusion Detection
	Signature-based Systems
	Machine Learning-based Systems
	Evaluating IDSs

	Machine Learning Methods
	Decision Trees and Random Forests
	Neural Networks
	Anomaly Detection

	Stream Data Processing
	Explainable AI
	Partial Dependence Plots
	Accumulated Local Effects

	Specific Requirements of High-Security Network Infrastructures
	Trust in ML-based Decisions
	Network Architecture
	Attack Sophistication

	Datasets

	Applying Stream Outlier Detection to Network Data
	A Comparison of Stream Outlier Detection Techniques
	Functional Principles of Outlier Detection Algorithms
	Comparison

	dSalmon: Efficient Outlier Detection in Python
	Related Projects
	Architectural Design and Interface
	Experimental Evaluation
	Discussion

	Applicability of Outlier Detection Methods to Attack Detection
	Outlier Detection Algorithms
	Data and Evaluation of Results
	Experiments
	Results and Discussion
	Discussion


	Novel Analysis Methods
	Related Work and State of the Art
	SDO
	Time Series Analysis
	Coreset Algorithms
	Periodic Pattern Mining
	Analysis of Encrypted Traffic

	SDOstream
	Notation
	Algorithm Design
	Time and Space Complexity
	Performance Evaluation

	Mining Periodic Patterns
	Preliminaries
	Our Method
	Experimental Evaluation
	Discussion

	Separating Flows in Encrypted Tunnel Traffic
	Tunnel Encryption Techniques
	Encrypted Flow Separation
	Experiments
	Defenses
	Discussion


	Explainability for IDSs using Supervised ML
	Related Work and State of the Art
	Explaining Classifications on Statistical Features
	Experimental Setup
	Performance Results
	Identifying Backdoors using Explainability Plots
	Discussion

	Explaining Classifications on Sequential Data
	An RNN-based Classifier
	Adversarial Attacks
	Explaining Predictions of RNNs
	Discussion


	Attacks on High-Security Infrastructures
	Related Work and State of the Art
	Covert Communication using AES-GCM
	Offloading Cryptographic Tasks
	GCM Encryption
	CKMD Architectures and Counter Mode Encryption
	Exploiting GCM for Subliminal Communication
	An Exemplary Infrastructure
	Mitigations
	Discussion


	Discussion
	Summarizing Discussion
	Challenges and Difficulties
	Research Challenges in Our Field
	Unanticipated Difficulties

	Opportunities for Improvement and Future Research
	Recommendations for IDS Construction

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

