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Abstract—Recurrent Neural Networks (RNNs) yield attractive
properties for constructing Intrusion Detection Systems (IDSs)
for network data. With the rise of ubiquitous Machine Learning
(ML) systems, malicious actors have been catching up quickly to
find new ways to exploit ML vulnerabilities for profit. Recently
developed adversarial ML techniques focus on computer vision
and their applicability to network traffic is not straightforward:
Network packets expose fewer features than an image, are
sequential and impose several constraints on their features.

We show that despite these completely different characteristics,
adversarial samples can be generated reliably for RNNs. To
understand a classifier’s potential for misclassification, we extend
existing explainability techniques and propose new ones, suitable
particularly for sequential data. Applying them shows that
already the first packets of a communication flow are of crucial
importance and are likely to be targeted by attackers. Feature im-
portance methods show that even relatively unimportant features
can be effectively abused to generate adversarial samples. We
thus introduce the concept of feature sensitivity which quantifies
how much potential a feature has to cause misclassification.

Since traditional evaluation metrics such as accuracy are not
sufficient for quantifying the adversarial threat, we propose the
Adversarial Robustness Score (ARS) for comparing IDSs and
show that an adversarial training procedure can significantly
and successfully reduce the attack surface.

I. INTRODUCTION

There is a significant body of scientific work focusing on

the detection of unwanted behavior in networks. In the past, a

viable way of performing intrusion detection was to inspect the

content of packets themselves and detect if a packet delivers

potentially harmful content. More recently, with the increasing

deployment of encryption, the focus now lies on features that

are always available to network monitoring equipment like

packet sizes, protocol flags or port numbers when encrypting

above the transport layer.

Network communication is usually aggregated into flows,

which are commonly defined as a sequence of packets shar-

ing certain properties. When analyzing flows, not only the

aforementioned features are available but also features related

to the timing of the individual packets. Various approaches

have been proposed to extract features from flows and then

perform anomaly detection with the extracted flows [1]. While

these approaches frequently work well, it is problematic that

the whole flow has to be received first and only afterwards

anomaly detection is applied, revealing attack flows. Thus, we

design a network IDS that operates on a per-packet basis and

decides if a packet is anomalous based on features that are

available even for traffic that is encrypted above the transport

layer, like for example TLS or QUIC. At the same time, an

RNN-based IDS has the benefit of providing any available

information to the classifier while avoiding tedious feature

engineering procedures, which derive statistical measures from

the sequence of packet features. We show that our system

has similar performance to other flow-based anomaly detection

systems but can detect anomalies before the flow terminates.

However, for practical use, high detection accuracy is not

enough. With the recent rise of interest in Adversarial Machine

Learning (AML) techniques, also AML for IDSs has been in-

vestigated. For example, [2] investigates remedies for poison-

ing attacks on IDSs and [3] investigate adversarial robustness

of common network IDSs. In this research, we investigate

whether adversarial samples, i.e. minimally different attack

flows which are classified as benign, can be found for our

RNN-based model. This is not a trivially answerable question

since adversarial samples have mostly been analyzed in the

context of computer vision. Our scenario significantly deviates

from computer vision because 1) the number of features

is significantly smaller and 2) only certain features can be

manipulated if the flow should remain valid.

Surprisingly, we can confirm that adversarial samples can be

found even when considering these tight constraints. Thus, we

argue that traditional performance metrics like, e.g., accuracy

are not sufficient for evaluating security-sensitive ML systems.

Despite the well-known threat of adversarial samples, we find

that related literature lacks metrics for adversarial robustness

and, in particular, no measure has been proposed for quanti-

fying the robustness of ML-based IDSs.

Due to the threat of adversarial attacks, but also as a basic

requirement for social acceptance of an ML-based system,

a further crucial requirement for ML-based IDSs is that the

classifier’s decisions are interpretable by humans. This recently

stirred up increased interest in explainability methods. Also in

this case, common methods are designed to work with images

or tabular data, but not with sequences.

In this paper, we attempt to provide a comprehensive

discussion of these security-related topics in the context of

RNNs. Our main contributions are:

• We analyze several methods for generating adversarial

samples and show that adversarial samples can be gen-

erated efficiently for an RNN-based classifier.

• Based on common robustness notions of related works, we

propose the Adversarial Robustness Score (ARS) as a new

performance score for IDSs, which captures the notion of

how easily an adversary can generate adversarial samples.

We demonstrate that the ARS can be computed efficiently.

• We review methods for evaluating which features have

a significant impact on the classifier’s prediction, both



picking up methods that have been proposed in the liter-

ature, extending them for RNNs, and devising new meth-

ods. Astonishingly, feature importance methods reveal that

features, which are manipulated for successful adversarial

flows, are not even particularly important for the RNN’s

classification outcome. Thus, we propose feature sensitivity

methods, which show how prone a feature is to cause

misclassification.

• Going further, we investigate which packets have a sig-

nificant contribution to the classifier’s decision and which

values of these features lead to classification as attack.

Hence, we extend existing explainability methods such as

Partial Dependence Plots (PDPs) [4] for sequential data.

• Based on the insights gained by the feature importance

and explainability methods, we finally propose two defense

methods. First, by simply leaving out manipulable features,

we obtain a classifier which is slightly less accurate but

is still useful to be deployed in a real scenario. Second,

by deploying an adversarial training procedure, we can

reduce the attack surface and harden the resulting IDS

while retaining all features and similar classification per-

formance. We show that the ARS is significantly higher

for the hardened model.

We make all the source code, data, trained ML mod-

els and figures freely available to enable reproducibility

and encourage experimentation at https://github.com/CN-TU/

adversarial-recurrent-ids.

II. AN RNN-BASED CLASSIFIER

We implemented a three-layer LSTM-based classifier with

512 neurons at each layer. For a large-enough network, we do

not expect these architectural parameters to have a severe im-

pact on classification accuracy, so we chose these parameters

to obtain a good performance while keeping training duration

at an acceptable level.

As the input features we use source port, destination port,

protocol identifier, packet length, Interarrival time (IAT) to the

previous packet in the flow, packet direction (i.e. forward or

TABLE I: Flow occurrence frequency of attack types.

(a) CIC-IDS-2017

Attack type Proportion

DoS Hulk 10.10%
PortScan, Firewall 6.90%
DDoS LOIT 4.08%
Infiltration 3.30%
DoS GoldenEye 0.32%
DoS SlowHTTPTest 0.18%
DoS Slowloris 0.17%
Brute-force SSH 0.11%
Botnet ARES 0.03%
XSS attack 0.03%
PortScan, no Fw. 0.02%
Brute-force FTP 0.01%
SQL injection <0.01%
Heartbleed <0.01%

(b) UNSW-NB15

Attack type Proportion

Exploits 1.42%
Fuzzers 1.01%
Reconnaissance 0.58%
Generic 0.21%
DoS 0.19%
Shellcode 0.08%
Analysis 0.03%
Backdoors 0.02%
Worms 0.01%

TABLE II: Performance metrics per packet and per flow. MLP

values from [2] are presented for comparison.

CIC-IDS-2017 UNSW-NB15
Packet Flow MLP Packet Flow MLP

Accuracy 99.1% 99.7% 99.8% 99.5% 98.3% 98.9%
Precision 97.0% 99.7% 99.9% 83.4% 78.6% 84.5%
Recall 97.8% 99.1% 99.2% 87.6% 72.6% 82.9%
F1 97.4% 99.4% 99.5% 85.5% 75.5% 83.7%
Youden’s J 97.2% 99.0% 99.1% 87.3% 71.9% 82.3%

reverse path) and all TCP flags (0 if the flow is not TCP).

We omitted Time-to-Live (TTL) values, as they are likely to

lead to unwanted prediction behavior [2]. Among the used

features, source port, destination port and protocol identifier

are constant over the whole flow while the other features vary.

During flow extraction we used the usual 5-tuple flow key,

which distinguishes flows based on the protocol they use and

their source and destination port and IP address. We use Z-

score normalization to transform feature values to the range

appropriate for neural network training. We ensured that our

classifiers do not suffer from overfitting using a train/test split

of 2:1.

For evaluation, we use the CIC-IDS-2017 [5] and UNSW-

NB15 [6] datasets which each include more than 2 million

flows of network data, containing both benign traffic and a

large number of different attacks. Attacks contained in the

datasets are shown in Table I. Table II shows the achieved

classification performance when evaluating metrics per packet

and per flow and includes performance results for an MLP

classifier from [2] for comparison. As depicted, our RNN-

based classifiers achieve an accuracy that is similar to previous

work based on these datasets [1, 2]. However, unlike these

classifiers, our recurrent classifier has the advantage of being

able to detect attacks already before the attack flows terminate.

III. ADVERSARIAL ATTACKS

We now investigate whether known AML methods can

be used for generating adversarial flows for our RNN. [3]

previously studied the behavior of several Network IDSs under

adversarial attacks but unlike us did not investigate RNNs.

A network packet contains significantly less features than,

e.g., an image and, furthermore, most features such as TCP

flags cannot be easily manipulated, as their manipulation might

violate the protocol specifications and thus cause communi-

cation to fail. We identify the packet length and the IAT as

features which are most likely to be exploited and thus choose

them to be modified by the adversary. But even these features

cannot be manipulated due to problem-specific constraints:

• Only packets can be manipulated which are transmitted by

the attacker, except for botnet and backdoor traffic, which

is entirely controlled by an attacker and thus only packets

travelling in one direction can be manipulated.

• Packets must not be smaller than initially, as otherwise less

information could be transmitted.

• IATs must not decrease, as otherwise the physical speed

of data transmission can be violated in some cases. An

https://github.com/CN-TU/adversarial-recurrent-ids
https://github.com/CN-TU/adversarial-recurrent-ids


in-depth analysis of cases in which reduction of IATs is

legitimate is complex, so we generally disallowed IAT

reductions.

Several AML methods have been proposed in the recent lit-

erature, achieving different speed-quality tradeoffs: [7] shows

that it is possible to create adversarial samples for an image,

which look similar to the original image but are classified

wrongly. [8] develops the Fast Gradient Sign Method (FGSM),

which makes easy generation of adversarial samples possible.

[9] explores the use of AML for RNNs, but lacks important

AML methods. We implemented the following AML methods.

A. Carlini-Wagner

We implemented the Carlini-Wagner method (CW) [10],

performing gradient descent on the optimization objective

d(X, X̃) + κmax(Z(X̃), δ). (1)

Here, d(·) is a distance metric and κ ∈ R
+ is a parameter

governing the tradeoff achieved between attack success and

distance from the original flow. Furthermore, Z(·) denotes the

neural network’s logit output, X denotes the original flow and

X̃ the adversarial flow optimized by CW.

δ ∈ R is a parameter that determines how far an adversary

wants to exceed the decision boundary. In the original publica-

tion δ = 0, meaning that the network’s decision for adversarial

samples is just between attack and benign traffic. In the present

context, we need to make sure that the classifier’s prediction

would actually be benign, even though a certain level of noise

will be added to IATs due to the network between attacker

and victim. Hence, we introduced δ = −0.2, corresponding to

a prediction confidence of 55% for the sample to be benign

after the sigmoid activation function.

We used L1 as distance metric, as we consider L1 distance

to represent practically relevant differences of network flows

best. We used Projected Gradient Descent (PGD) for meeting

the real-world constraints discussed above.

B. L∞-bounded Projected Gradient Descent

[11] uses a method for generating adversarial samples

which deploys PGD to maximize the network’s loss function

while constraining the achieved L∞ distance from the original

samples. Hence, an important difference to CW is that for this

method the network’s loss instead of its logit output is con-

sidered. We consider this method an interesting combination

of CW and FGSM. Since its functioning is somewhat similar

to CW, we expected the generated adversarial samples to be

similarly close to the original samples.

C. Fast Gradient Sign Method

Finally, we also tested the FGSM [8], which is the first

method for generating adversarial samples. FGSM can be

considered a single pass of PGD on the loss function with

an equality constraint on the L∞ distance, i.e. the adversarial

sample is found as

X̃ = X + ε sgn(∇XL(X)), (2)
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Fig. 1: Attack success ratios for both datasets and per attack

type for CIC-IDS-2017. Depicted are flow detection accuracies

for adversarial flows and for unmodified attack flows.

where L(X) denotes the network’s loss function and ε denotes

the achieved L∞ distance.

D. Evaluation

Figure 1 depicts the performance for the investigated algo-

rithms for both datasets and for each attack type in CIC-IDS-

2017. We used CW with a tradeoff of 1 and, to provide a

fair comparison, for FGSM and PGD we used an average L∞

distance as observed for CW.

CW delivers the best performance and FGSM, while being

the fastest of all investigated algorithms, delivers the worst

performance. The figure shows significant differences for

detecting different attack families in the first place. Also for

generating adversarial flows some attack families are more

susceptible than others. However, the results match to a high

degree with our expectations. For example, SQL injection

attacks apparently are closer to benign traffic than Denial-of-

Service (DoS) attacks and, hence, finding adversarial samples

should be easier.

Interestingly, any increase of the L∞ bound for PGD did not

yield significantly improved performance. CW thus generally

achieved superior results to L∞-bounded PGD and we can

confirm the recommendation by [10] to perform gradient

descent on the logit output instead of the loss for good results.

Figure 2 depicts the success ratio and average distance

for CW for different tradeoffs κ. Evidently, the larger κ, the

better the attack works, but also distances from original flows

become higher. With acceptable distances, we were able to

generate adversarial samples for about 80% of attack samples.

For successful adversarial samples, the second term in Equa-

tion 1 becomes constant and, hence, is no longer relevant for

optimization. Hence, κ is irrelevant for the achieved distance,

but governs if for one sample an adversarial sample is found.

However, when using a large κ in Equation 1, to avoid overly

large steps that impede convergence, it is necessary to reduce

the gradient descent learning rate. Since the distance term is

not affected by κ, it is furthermore necessary to scale the

iteration count inversely with the learning rate. CW with a

large κ therefore needs more time than with a small κ.



IV. EVALUATING ADVERSARIAL ROBUSTNESS

As Figure 1 shows, for most attack types, most samples can

be modified by an adversary to be classified as benign by using

CW. High recall for a particular attack type does not imply that

adversarial samples are hard to find for these attacks. Thus we

argue that beside the classical metrics such as accuracy, false

positives etc., a metric is needed, which quantifies how easily

an IDS classifier can be fooled.

Such a metric should be easy to compute and easy to

interpret. While in general adversarial robustness for ML

models is frequently quantified as the average or median of

minimum distances of adversarial samples [12], we found no

generally agreed-upon metric for IDSs in the literature. If we

consider flows, for which no adversarial sample can be found,

to have infinite distance, the median has the advantage of

ignoring such unsuccessful samples and outliers. On the other

hand, the median might depict expected distances badly if they

have a very uneven distribution.

We thus propose the ARS as follows. Let S denote the set

of samples, N = |S| ∈ N the total number of samples and

ds ∈ R
+

0 the distance of an adversarial flow from the original

flow for a sample s ∈ S , assigning unsuccessful samples a

distance of ∞. We define the ARS as

ARS =
1

dN/2e

∑

s̃∈S̃
ds̃, (3)

with S̃ ⊂ S denoting a set of size |S̃| = dN/2e, so that ds̃ ≤
ds for all s̃ ∈ S̃, s ∈ S \ S̃ . The ARS is thus approximately

the average of distances not larger than the median distance.

We consider an adversary successful if he can cause at least

50% of all samples to be misclassified. In this case, the ARS

is the average of the distances of the adversarial samples to

the original samples for the 50% of all samples which have

the smallest distances. If the adversary doesn’t manage to

manipulate enough samples, the ARS is ∞.

CW is able to find adversarial samples with minimum

distance, but becomes slow for large κ. Hence, it can be used

for finding the ARS efficiently as follows: Use CW with a

small tradeoff, trying to generate adversarial samples for an

attack type. If at least N/2 are wrongly classified, and the

smallest distance of non-adversarial samples is not smaller

than the dN
2
eth smallest distance of adversarial samples, stop

and compute the ARS. Otherwise increase κ and repeat. If

after a predefined number of iterations – e.g. 100 – still not
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Fig. 2: Performance of CW with different κ values.

more than half of the samples are adversarial, also break and

set the ARS to ∞.

The larger the ARS is, the more robust the model is, as

then an adversary needs to modify the samples more to make

them adversarial. If not more than half of the samples could

be made adversarial, our metric is ∞ since then apparently it

is not possible for an adversary to reliably conduct adversarial

attacks on the majority of samples. In this case, the ratio of

samples that could be made adversarial can be a useful metric

to determine the exact extent of the adversarial threat.

Setting the threshold for the ARS to 50% is arbitrary, but

reasonable as outliers with very large distances are ignored

and because if an attacker can make the majority of samples

adversarial, we argue that its attack is “successful”.
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Fig. 3: Recall for unmodified flows and ARS for attacks

in CIC-IDS-2017. For “PortScan, Firewall” recall never falls

below 66%: The attack does not succeed and the ARS is ∞.

Figure 3 shows that certain attack types, like “DoS

SlowHTTPTest”, are easy to classify for an IDS but still are

also surprisingly vulnerable to adversarial modifications by an

attacker aiming to make them look benign.

V. EXPLAINING RECURRENT NEURAL NETWORKS

Having verified the effectiveness of AML for our RNNs, we

now investigate how the classifiers come to a decision. From

a naive perspective, one might be tempted to reuse existing

explainability methods for RNNs by considering a flow the

sum of its packet features. We identify several difficulties

which occur when trying to explain decisions made by RNNs.

• Feature quantity. The number of features fed into an RNN

is the number of packet features times the flow’s length. For

long flows, this can result in a vast total number of inputs.

• Variable sequence lengths. The length of different flows

might differ tremendously. Hence, features at one particular

time step might be important for the network’s outcome for

one flow, but not even exist for other flows.

• Lack of a distance measure. However, even if we restricted

the analysis to flows of a constant length, a flow is different

from the plain concatenation of its packet features. For exam-

ple, in a sentence, which is sequence of words, parts can be

rearranged, giving a different sequence with possibly the exact

same meaning.



TABLE III: Accuracy drop for:

(a) Input perturbation

Feature Accuracy drop

Protocol 0.207
Packet Length 0.165
SYN Flag 0.099
ACK Flag 0.084
Direction 0.073
Destination port 0.071
Source port 0.060
RST Flag 0.057
PSH Flag 0.056
Interarrival time 0.024
FIN Flag 0.012
URG Flag 0
ECE Flag 0
CWR Flag 0
NS Flag 0

(b) Feature dropout

Feature Accuracy drop

Destination port 0.025
Source port 0.003
RST Flag 0.001
ACK Flag 0.001
Protocol 0.001
Packet Length 0.001
Direction 0.001
SYN Flag 0
Interarrival time 0
FIN Flag 0
ECE Flag 0
URG Flag 0
CWR Flag 0
NS Flag 0
PSH Flag 0

• Multiple prediction outputs. Often an RNN produces

an output at each time step. When applying explainability

methods, the question arises which output to consider for the

method. The natural choice is to base the methods on the

prediction output which occurs at the same time step as the

feature under investigation: This approach is less complex

compared to considering also features of all earlier time

steps. Also, we expect the current prediction outcome to

more dependent on the current feature, compared to a feature

from many steps ago. However, due to the complex decision

processes of deep neural networks, this is not always true and

a feature might influence a decision many time steps later.

Many explainability methods proposed recently are local

and thus provide explanations for a particular data sample

[13, 14, 15, 16]. However, for the particular problem of

network traffic, due to the high number of flows and the

characteristics of data, analyzing individual samples is of

low interest. Explainability methods presented in this paper

therefore aim to understand a model by analyzing which

features are important, at which time step they are important

and which feature values lead to classification as attack.

A. Feature Importance Metrics

As a first step to understanding the neural network’s deci-

sions, we estimate how important individual features are for

the model’s predictions. When investigating an ML classifier,

it is natural to ask which inputs have a large influence on the

classifier’s prediction. We feel the need to distinguish metrics

for this purpose based on their main aim:

A large amount of research has been spent on finding

feature importance metrics, which allow the selection of high-

importance features, providing a reasonably good classification

performance while resulting in a more light-weight classifier.

Conversely, both adversarial machine learning and explain-

able machine learning bring up the question to what extent

individual features are able to change the prediction outcome.

While appearing similar, traditional feature importance can

yield markedly wrong results for this case. To distinguish,

we propose the term feature sensitivity for such metrics. To

analyze features, we use the following approaches:

1) Neural Network Weights: In previous works [17, 18], a

simple method for determining feature importance in neural

networks has been summing up neural network weights lead-

ing from a certain input to the prediction outcome. The weights

method can be considered for both feature importance and

feature sensitivity, however, clearly, especially in the case of

complex network architectures, this method is likely to provide

wrong results. Hence, we provide results for the weights

method mainly for comparison. Note that an LSTM cell alone

has four weights leading from one input to an output.

2) Input Perturbation: The most commonly deployed fea-

ture importance techniques, used by practitioners for RNNs

[19] and Deep Learning (DL) [20, 21, 17], are based on adding

noise to a particular feature and evaluating the drop in accuracy

that occurs. We argue that it is hard to determine the “correct”

intensity of noise to add. Hence, we sample the value for a

feature from the distribution of all values of this feature in

the dataset. This makes the method non-parametric since the

noise distribution does not need to be chosen. We ensured

that features which stay constant for a flow, i.e. source port,

destination port and protocol, also stay constant throughout

the flow when randomizing the feature.

3) Feature Dropout: While the perturbation method is

convenient since it is easy to implement and understand, we

argue that it has some shortcomings: The RNN was never

trained for dealing with “garbage” values that the random-

ization creates. For example, completely unrealistic feature

combinations could occur that were never observed during

training. Furthermore, sequences of features could occur that

cannot occur in reality.

To evaluate true feature importance, we thus develop a more

sound method called feature dropout: When training a model,

for each sample, we leave out each feature with independent

probability 1

n
, n ∈ N being the number of features, by setting

it to zero. On average, one feature gets zeroed out but it is

also possible that none or more than one are left out. This

procedure is equivalent to using dropout [22] with probability
1

n
before the first layer.

An important implementation detail is that for each feature

we add another input which is 1 if the feature is suppressed

and 0 otherwise. This is necessary for the neural network to

be able to distinguish between a feature missing and a feature

genuinely being zero. The overall outcome is a classifier being

able to deal with missing features. The results in Table III show

that, unlike input perturbation, feature dropout does not vastly

overestimate features’ importance. With feature dropout, it

becomes apparent that only very few features actually contain

unique information, affecting accuracy when left out: the

destination port and the source port.

A model trained with feature dropout typically yields

slightly lower accuracy than a regularly trained model, even if

no features are left out (flow accuracy of 99.43% vs. 99.65%).

We thus recommend training two models: One regular one and

one with feature dropout to use for the feature importance.
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Fig. 4: Feature importance metrics for the flow prediction for CIC-IDS-2017 (left side) and UNSW-NB15 (right side).

Another method that uses dropout for feature importance

is [23], applying a technique called Variational Dropout to

learn the optimal dropout rate for each feature. It tries to leave

out as many features as possible and at the same time keep

accuracy high. Thus important features are going to be left out

less often and one can then extract the dropout probabilities

for each feature and assess their significance based on them.

While this method looks seemingly related to feature dropout,

it is significantly more complex and does not aim to show the

accuracy drop that occurs when omitting a feature but instead

returns a unique feature importance value between 0 and 1.

For feature dropout, it can also happen that several features

are left out for a sample and so our method can also be

used to analyze the effect of multiple features missing and

can thus show possibly correlated features or – more general

– features that contain common information, relevant for the

classification task:

score =
accbase − acc-both features

(accbase − acc-feature 1) + (accbase − acc-feature 2)
(4)

With accbase we denote the accuracy of the classifier with all

features included, with acc-feature i the accuracy if feature i is

omitted and with acc-both features the accuracy if both features

are omitted. Assuming a non-negative accuracy drop when

omitting a feature, the resulting score is ≥ 0.5. The higher it

is, the larger the information that both features share.

For example, the score between RST and the protocol

identifier is 8.5; the highest of all pairs of features. While

this may be unintuitive at the first glance, it likely stems from

the fact that if the protocol identifier (TCP or UDP) is missing,

then RST being 1 at some point indicates that the flow is TCP.

Feature dropout might constitute a building block for meth-

ods based on Shapley values [13] like KernelSHAP [14].

4) Mutual Information: Input perturbation and feature

dropout mainly address feature importance. For example,
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Fig. 5: Two distributions yielding an identical accuracy drop.

assuming that the test dataset is representative for production

use, for feature importance it is reasonable to equate the dis-

tribution for perturbing a feature with the feature distribution

itself. However, when evaluating feature sensitivity, e.g. for

analyzing potential for adversarial samples, the attacker is not

limited by this distribution and frequently is able to choose

arbitrary values in the feature space.

Furthermore, we argue that accuracy drop depicts an im-

portance measure which might be misleading for evaluat-

ing feature sensitivity. To see this, let f(A, x) denote the

joint probability for classification as attack and a feature

value x. Accuracy then is
∫

R
f(A, x)dx for attacks and 1 −

∫

R
f(A, x)dx for benign traffic. Figure 5 shows two different

distributions yielding the same accuracy, but clearly the right-

side distribution has a larger influence on the prediction, as in

the right-side case the prediction deterministically depends on

the feature value.

To capture such dependencies, we propose to use mutual in-

formation to determine feature sensitivity. Mutual Information

between two random variables X,Y is defined as

IX,Y = E

{

log

(

fX,Y (x, y)

fX(x)fY (y)

)}

, (5)

with fX(x), fY (y) and fX,Y (x, y) denoting the distribution

of X,Y and their joint distribution, respectively. To obtain

feature sensitivity, we compute mutual information between

an input variable and the prediction output for one flow at one

particular time step, averaging over the result for the test set.

5) Comparison: Figure 4 shows the results, which match to

a large extent with domain-specific expectations for classifying

network flows. In particular, rarely used TCP flags like NS or

URG are unimportant for the classifier. On the other hand,

destination port and protocol are essential for characterizing

flows by hinting at the type of traffic. IAT and packet length are

important for estimating the amount of transferred information

and several flags hint at certain attacks like DoS attacks.

The weights method is able to reveal features with a very

low importance to a certain degree, but disagrees with the other

methods to a large extent. Less anticipated, however, also input

perturbation does not exhibit a considerable correlation with

feature dropout. Considering its functioning of completely re-

moving individual features, feature dropout is the most reliable
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Fig. 6: PD plot for the source and destination port features.

method for evaluating importance for removing features. It is

remarkable that none of the other methods is able to depict

the distinct peak of importance for the destination port visible

for feature dropout in Figure 4 and Table III.

It is not surprising that mutual information disagrees with

feature dropout, since both their aim and their functioning

are substantially different. For example, mutual information

shows that the protocol field can have a substantial impact

on the classification even though an identical accuracy can be

achieved when omitting it.

Metrics for UNSW-NB15 differ substantially from CIC-

IDS-2017. However, due to the large number of different

network attacks and network configurations, it is easily pos-

sible that relevant features are very different. We consider the

question of model transferability of substantial importance for

IDS applications, but out of scope for the present research.

B. Explainability Plots

Knowing which features to investigate, it is important to

analyze which feature values lead to classification as attack. In

literature, the use of Partial Dependency Plots (PDP) has been

proposed [4]. To inspect attack types in detail, in this research

we use a conditional form of the PDP. If X ∈ R
n denotes a

random vector drawn from feature space, f(X) ∈ [0, 1] the

neural network’s prediction and c the attack type, we define

the conditional PDP for feature i as

PDPc,i(w) = EX|C

(

f (X1, . . . , Xi−1, w,Xi+1, . . . Xn) |c
)

,

(6)

empirically approximating the conditional distribution by the

observed subset that belongs to a certain attack type.

By using a classical PDP we would likely lose information

due to the averaging over very different types of traffic.

However, for network traffic in particular, investigating each

sample individually is not possible. Hence, the conditional

PDP provides the ideal compromise for our application.

Due to the use of a 5-tuple flow key, port numbers and

the protocol identifier are constant for all packets in one

flow. Hence, we can consider the RNN a regular classifier

and reuse PDPs, which have been proposed for non-recurrent

classification methods, by plotting the RNN’s flow prediction

outcome over one of these features. The results show that

for some attack types the port numbers play an important

role. When looking at the PDP for benign traffic samples in
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Fig. 7: Classifier confidence per time step for CIC-IDS-2017.

For the majority of attack types, confidence increases in the

first few steps and then stays almost constant at 1.

Figure 6, it becomes apparent that traffic destined to a high

destination port is generally indicative of an attack. We argue

that this is because most services that regular users use have

low port numbers.

C. Plots for Sequences

Intuitively, features at the beginning of a flow should be

the most important while the classifier’s predictions should

not vary significantly anymore, as soon as it has come to a

decision.

To evaluate this hypothesis, Figure 7 depicts the classifier’s

prediction confidence for each time step, along with the

number of samples having at least this length, which were used

for evaluating the figure. While at the first couple of packets

the confidence is not very high, towards the end of the flow

it reaches values close to 1 and stays there. Hence, not only

is the classifier able to make a reasonable classification after

just a few packets, the figure also suggests that indeed later

packets have a negligible influence on the prediction.

For investigating in more detail how features influence the

prediction outcome, we extend PDPs to the sequential setting.

Denoting as X = {X1, . . . ,Xm} the series of packet features

X
t ∈ R

n and ht(X) the network’s hidden state after time step

t, we define the sequential PDP as

seqPDPc,i(t, w) = (7)

EX|C

(

f
(

ht−1(X), Xt
1, . . . , X

t
i−1, w,X

t
i+1, . . . X

t
n

)

|c
)

.

Figure 8 shows an example together with the mean values

for both unmodified samples and adversarial samples. Also in

this figure we notice that mainly the first few packets are able

to influence the prediction outcome and modifying features at

a later time step does not change its confidence any longer. In

many cases, the adversarial sample generation indeed moves

packet features to areas where the network is less likely to

be classified as attacks, confirming the effectiveness of PDPs.

In other cases, however, we did not observe an agreement

between PDP and adversarial modifications, hinting at de-

pendencies which cannot be presented by PDPs. Since the

IAT is undefined for the first packet, we always set it to 0.

Still, interestingly, the plot shows, that the classifier considers

packets with a higher IAT to be more likely to be attacks than

those with a smaller one.



102

103

104
Pk

t. 
le

ng
th

 (B
)

0 5 10 15 20
Time step t

10 6

10 3

100

IA
T 

(s
)

Original flows Adversarial flows

Fig. 8: Exemplary sequential PD plot and adversarial flows for

the DoS Slowloris attack in CIC-IDS-2017. The lines show the
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Finally, we investigated whether our classification task

involves recognizing complex patterns in the feature space.

As example, Figure 9 shows that attack types indeed have a

characteristic pattern in which they send packets by which they

are easily recognizable. Other attack families similarly show

characteristic patterns.

VI. DEFENSES

We now investigate two approaches to increase robustness

of the RNNs against adversarial attacks. Several methods

have been proposed to improve robustness in the context of

computer vision [24]. We chose the methods presented below,

because they are simple and can be applied to our recurrent

setting in a straight-forward fashion.

A. Reducing Features

The most obvious defense is to simply omit features an

attacker can manipulate. We try two different approaches of

this defense strategy:

• Leaving out all manipulable features, i.e. packet size and

IAT, in both directions.

• Leaving them out only in the direction from the attacker

to the victim. This, however, does not prevent adversarial

samples for botnets, for which the attacker has control over

both sides.

Both approaches lead to complete resistance to adversarial

samples, except for botnets, which can still operate when only

leaving out manipulable features in one direction. The results

show that – surprisingly – there is only a small difference

in classification performance when looking at flow accuracy:

It is slightly lower at 99.3% compared to 99.7% originally

for CIC-IDS-2017. However, packet accuracy is only 98%

when leaving out the features in one direction and 96.7%

when leaving them out in both directions. Thus, apparently the

IAT and packet size are especially important for determining

whether a flow is malicious in the first packets of a flow.
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Fig. 9: IAT and packet length for SSH brute-force attacks in

CIC-IDS-2017.

B. Adversarial Training

As alternative to omitting manipulable features, we at-

tempted to make the classifier more robust against adversarial

samples by augmenting the training set by adversarial flows

generated using CW, labeled as additional attacks. This ap-

proach can be considered an adversarial training procedure,

which is a common defense method in the related litera-

ture [24, 11]. We added one adversarial sample per attack

sample to the training set. Since CW is deterministic, this is

the maximum number of adversarial samples possible. With

this augmented training set we then alternated retraining of the

neural network and optimization of the adversarial samples.

A question which occurs in this process, is how many CPU

cycles to spend on network training and adversarial sample op-

timization. We decided to use as many backpropagation steps

for training as we use for adversarial sample optimization. For

each adversarial sample optimization step, we performed 10

iterations of gradient descent. Hence, all adversarial samples

were optimized each 10 epochs of neural network training.

Figure 10 shows the ARS throughout adversarial training for

several attack categories and clearly indicates that adversarial

training is effective, as the distance gradually increases. Hence,

an attacker would have to modify attack samples more and

more, eventually rendering the attack unpractical.

For both datasets, after a small number of epochs, it was no

longer possible to create a significant number of adversarial

samples for most attack categories. After 50 epochs of training,

accuracy is essentially identical to the results presented in

Table II. Recall and informedness increased and precision

slightly decreased. However, this is due to the higher propor-

tion of attack samples in training data and, hence, expected.

We conclude that adversarial training is effective for reducing

the attack surface for adversarial attacks in our scenario.
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Fig. 10: ARS during adversarial training for UNSW-NB15.



VII. CONCLUSION

We have implemented a recurrent classifier based on LSTMs

to detect network attacks, which is able to detect attacks

already before they are over. The recurrent approach allowed

us to inspect the influence of single packets on the detection

performance and shows which packets are characteristic for

attacks. Even though the interpretation of RNNs poses several

difficulties, we have demonstrated methods for gaining insights

into the model’s functioning.

We showed that even though our use case is very different

from computer vision, adversarial samples can be found ef-

ficiently, even if only ostensibly unimportant features can be

modified. We introduced feature sensitivity methods to show

which features can easily be manipulated by an adversary

to cause a wrong classification. We proposed the ARS for

quantifying and comparing the adversarial threat for IDSs.

Deploying an adversarial training procedure, we could sig-

nificantly reduce the adversarial threat.
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