
SDOoop: Capturing Periodical Patterns and
Out-of-phase Anomalies in Streaming Data Analysis

Alexander Hartl
Institute of Telecommunications

TU Wien
1040 Wien, Austria

me@alexhartl.eu

Félix Iglesias Vázquez
Institute of Telecommunications

TU Wien
1040 Wien, Austria

felix.iglesias@tuwien.ac.at

Tanja Zseby
Institute of Telecommunications

TU Wien
1040 Wien, Austria

tanja.zseby@tuwien.ac.at

Abstract—Streaming data analysis is increasingly required in
applications, e.g., IoT, cybersecurity, robotics, mechatronics or
cyber-physical systems. Despite its relevance, it is still an emerg-
ing field with open challenges. SDO is a recent anomaly detection
method designed to meet requirements of speed, interpretability
and intuitive parameterization. In this work, we present SDOoop,
which extends the capabilities of SDO’s streaming version to
retain temporal information of data structures. SDOoop spots
contextual anomalies undetectable by traditional algorithms,
while enabling the inspection of data geometries, clusters and
temporal patterns. We used SDOoop to model real network
communications in critical infrastructures and extract patterns
that disclose their dynamics. Moreover, we evaluated SDOoop
with data from intrusion detection and natural science domains
and obtained performances equivalent or superior to state-of-
the-art approaches. Our results show the high potential of new
model-based methods to analyze and explain streaming data.
Since SDOoop operates with constant per-sample space and
time complexity, it is ideal for big data, being able to instantly
process large volumes of information. SDOoop conforms to next-
generation machine learning, which, in addition to accuracy and
speed, is expected to provide highly interpretable and informative
models.

Index Terms—Contextual Anomalies, Streaming Data Analysis,
Anomaly Detection, Communication Networks, Critical Infras-
tructures

I. INTRODUCTION

In data stream processing, data points vj ∈ RD consis-
tently arrive at monotonically increasing times tj ∈ R for
j = 1, 2, . . . Due to this steady acquisition, analysis algorithms
face the challenge of discovering knowledge in unbounded
data that substantially accumulates in a short time. In such
a context, real-life applications dismiss batch-mode operation
while demanding fast online processing able to update models
and parameters to concept drift. Here, “updating models and
parameters” does not only mean adapting to new patterns and
classes, but also forgetting those that have become obsolete.

In anomaly/outlier detection (OD), we commonly set a
sliding window (or an observation horizon) w that establishes
the memory length for which space geometries are remem-
bered. Hence, the anomaly is defined: (a) either based on
the neighborhood of a data point within w (e.g., Exact- and
Approx-STORM [1]), or (b) by comparing to a model that
evolves with w (e.g., Robust Random Cut Forests [2]). In both
cases, note that the comparison reference is purely static (or

geometric) relative to the point of comparison at the instant
of comparison. That is, the data within w (or the model used
instead) is a snapshot. While this is not a problem for many
types of anomalies, most traditional methods are blind to
identify contextual anomalies. A contextual (aka. conditional
or out-of-phase) anomaly “occurs if a point deviates in its local
context” [3], i.e., if it happens outside its usual time. Consider
a method whose w spans a one-week period. If a cluster occurs
exclusively during weekends, but a data point of this cluster
accidentally appears on a Wednesday, this method will not
identify it as an anomaly, but as a normal inlier instead.

Here, we present SDOoop (SDO out-of-phase), an algo-
rithm for OD in streaming data whose models store temporal
information. While retaining constant per-sample space and
time complexity and keeping intact the functionalities to
detect other types of anomalies, SDOoop is also able to
identify contextual anomalies and capture periodical patterns
that explain the time behavior of the data bulk. SDOoop
builds models by sampling a fixed number of data points
at representative locations in feature space, called observers.
To escape dependence of the data volume, it uses an ex-
ponentially weighted moving average (EWMA) to estimate
model information from the arriving data mass. At the same
time, observers hold temporal information as coefficients of
Fourier transforms (FT). Thus, for a specific time of interest

0 100 200 300 400 500
Time

0

2

4

6

8

Fe
at

ur
e

va
lu

es

0

1

2

3

4

Ob
se

rv
at

io
ns

Fig. 1. Example of a data stream, a model with two observers (red and
orange), and three types of anomalies (blue): local (left), contextual (middle),
global (right).

https://orcid.org/0000-0003-4376-9605
https://orcid.org/0000-0001-6081-969X
https://orcid.org/0000-0002-5391-467X

t, observers “twinkle” to show only the most representative
model for time t. The simple example in Fig. 1 can give
an intuition of the distinctive capabilities of SDOoop when
compared with alternatives. In the figure, the internal model
(incrementally updated) is formed by the red and orange
points, which represent observers. Observers are placed in
areas of considerable density to see the data mass around. Note
that, while the orange observer stands for a cluster that occurs
at a continuous pace, the red observer represents a cluster that
exhibits a temporal behavior. Consequently, the red observer
twinkles accordingly, the drawn gray curve showing the inverse
FT of its captured FT coefficients. If a contextual anomaly
happens, closest observers will not be awake, hence it will be
detected as an anomaly by far observers.

Our work advances the research on observers-based unsu-
pervised learning, which originated SDO [4], SDOstream [5]
and SDOclust [6]. The remainder of this paper is struc-
tured as follows: In Section II, we introduce observers-
based OD. Section III describes SDOoop and explains its
parameters. SDOoop is evaluated in Section IV. In Section V
we explore related research efforts and contrast them to the
problem solved here. Finally, we summarize the main ideas
and contributions in Section VI. To enable reproducibility,
we make all our source code available in our repository
https://github.com/CN-TU/tpsdos-experiments.

II. OBSERVERS-BASED OUTLIER DETECTION

The Sparse Data Observers (SDO) method [4] for OD on
static datasets is the foundation of our current proposal. In a
nutshell, SDO works as follows: (a) Randomly sample points
from the dataset, which will be called “observers”. (b) Each
data point in the dataset is only observed by the x nearest
observers, resulting in each observer performing a different
number of observations. (c) Remove idle observers, i.e., with
the smallest number of observations. Remaining observers are
termed active. (d) For each data point, compute an outlier score
as median distance to the x nearest active observers. Hence,
observers capture the main shapes of the data in a low-density
model and outlier scores are calculated as distances to points
in this model. Removing idle observers minimizes the chances
of outliers being part of the model. The observer-approach
also holds for SDOstream [5], which adapts the algorithm for
a streaming setting by continuously sampling new observers
and using EWMA for computing observations.

In this paper, we predominantly adhere to the notation of [5].
Hence, we denote the observers set as Ω and, accepting a
slight abuse of notation, we denote by ω ∈ Ω both an abstract
observer and its feature vector. Furthermore, Pω denotes ω’s
observations, where Pω ∈ N0 for SDO and Pω ∈ R+

0 for
SDOstream. Hence, Pω counts the number of data points
for which ω belongs to the x nearest observers with an
algorithm parameter x ∈ N. Observers with insufficient Pω are
thus disregarded for outlier scoring. In contrast to SDO and
SDOstream, SDOoop replaces the number of observations Pω

with a temporal function, allowing active observers to become

TABLE I
SYMBOLS AND NOTATION

A
lg

or
ith

m
Pa

ra
m

et
er

s k ∈ N Number of observers.
x ∈ N Number of nearest observers.
T ∈ R+ EWMA time constant.
T0 ∈ R+ FT base period.

Nbins ∈ N Number of frequency bins.
qid ∈ [0, 1] Observer idle-active fraction.

A
lg

or
ith

m
St

at
e

Ω Observers set.
Pω,n ∈ C Fourier coefficients for ω’s observations.
Hω ∈ R+ Reference for age-normalization of Pω,0.
iLAO ∈ N Index of last added observer.

Fu
rt

he
r

N
ot

at
io

n

ω ∈ Ω An observer.
d (·, ·) A distance function.
N ⊂ Ω Set of nearest observers.
Na ⊂ Ω Set of nearest active observers.
n ∈ [Nbins] The frequency index.
∈R Uniformly random sampling from a given set.
R,C Sets of real and complex numbers, respectively.

ℜ(·),ℑ(·) Real and imaginary part, respectively.

temporarily idle (i.e., asleep) and reappear dynamically in ac-
cordance with the temporal pattern of the underlying clusters.
Therefore, it is possible to construct an active observers set
representative for the data stream at the current time and,
hence, to detect data points that do not meet the established
temporal pattern, i.e., contextual anomalies.

III. SDOOOP

We describe the construction of our proposal. Main symbols
and notation are shown in Table I. We denote by [Nbins] with
Nbins ∈ N the set {0, . . . , Nbins−1} and by d : RD×RD → R+

a distance function (e.g., Euclidean). Our method enables the
model to absorb temporal patterns in processed data streams.
To describe this, we consider data streams satisfying the
following definition.

Definition 1: For a given data stream, let γ(v, t) ∈ R+
0

denote the expected rate of arriving data points at location
v ∈ RD and time t ∈ R. Therefore, γ(v, t)∆v∆t stands
for the expected number of data points seen in a volume ∆v
and time interval ∆t. We say that the stream exhibits T0-
periodic patterns with T0 ∈ R+ if γ(v, t) is T0-periodic, i.e.,
γ(v, t) = γ(v, t+ T0) for all v ∈ RD, t ∈ R.

Definition 1 is based on the expected rate of arriving data
points. This means that, to reason about periodic behaviors,
the random stream is modeled as generated by an underlying
deterministic process. In particular, a stationary stream exhibits
T0-periodic patterns for any T0. Note that Definition 1 does
not include concept drift, which is tackled by SDOoop with a
exponential sliding window.

To capture temporal patterns, we allow the observers’
observations to be T0-periodic. We represent and store the
associated temporal functions in terms of their FT coefficients
Pω,n ∈ C with ω ∈ Ω, n ∈ [Nbins]. To extract observers
relevant for the current point in time from the model, we first

https://github.com/CN-TU/tpsdos-experiments

define the qid-percentile Pthr ∈ R+ of the observers’ average
observations Pω,0, i.e.,

Pthr = max
{
ρ ∈ R+

∣∣∣ ∣∣{ω ∈ Ω |Pω,0 < ρ}
∣∣ ≤ qid|Ω|

}
. (1)

Similar to previous work, Pthr allows us to require active
observers to have a minimum number of observations in
relation to the total time-averaged observation count. Hence,
we construct a view yielding the currently active observers

Ωa =

{
ω ∈ Ω

∣∣∣ℜ{∑
n∈[Nbins]Pω,n

}
≥ Pthr

}
(2)

in terms of a lower-bound for the inverse FT, where
ℜ
{∑

n∈[Nbins]Pω,n

}
evaluates the temporal shape of the ob-

servers’ observations at the current time.
To narrow the scope to the most relevant information, we

form sets from both Ω and Ωa that only contain the x nearest
points. Hence, for a point v ∈ RD we specify the set of
nearest observers N (v) ⊂ Ω with |N | = min(x, |Ω|) and
the set of nearest active observers Na(v) ⊂ Ωa with |Na| =
min(x, |Ωa|), i.e.

d(ω̃,v) ≤ d(ω,v)∀ ω̃ ∈ N (v),ω ∈ Ω \ N (v) and (3)
d(ω̃,v) ≤ d(ω,v)∀ ω̃ ∈ Na(v),ω ∈ Ωa \ Na(v). (4)

Algorithm 1 depicts the core process, discussed as follows.

Algorithm 1 Processing a data point (vi, ti).
1: Find x nearest observer sets N (vi) and Na(vi)
2: report medianω∈Nad(ω,vi) as outlier score
3: Set Hω ← Hω exp(− ti−ti−1

T) + 1 ∀ω ∈ Ω

4: Set Pω,n←Pω,n

[
exp(- 1

T + jn2π
T0

)
]ti-ti-1

∀ω ∈ Ω, n ∈ [Nbins]

5: Set Pω,n ← Pω,n + 1∀ω ∈ N , n ∈ [Nbins]

6: if |Ω| = 0 or r ≤ k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti-tiLAO
i-iLAO

with r ∈R [0, 1]

then
7: Remove arg minω∈Ω

Pω,0

Hω
from Ω if |Ω| = k

8: Add vi to Ω
9: Set iLAO ← i, Hvi

← 1 and Pvi,n ← 1∀n ∈ [Nbins]
10: end if

A. Algorithm Construction

Algorithm 1 can be divided into three parts: establishing
active observers Ωa (line 1), scoring outlierness (line 2), and
updating the model (lines 3-10). The core concept, which
allows to capture periodical patterns, is based on Lemma 1.

Lemma 1: For an observer ω ∈ Ω, let g(t) ∈ R+ denote
the expected rate of arriving data points, for which ω is
contained in N at time t. If g(t) is a T0-periodic function
and T ≫ T0, observations Pω,n approximate a Fourier
transform E{Pω,n} ≈

∫ 0

−T0
g(τ − t) exp(−j2πnτ/T0)dτ up

to a constant factor.
We prove the lemma in Appendix A. Lemma 1 shows that

temporal information about how frequently observers are used
can be extracted from Pω,n in terms of an inverse FT. To
obtain the current set of active observers Ωa, it suffices by

selecting observers that have been used most often in the past.
Here, observer activity is mainly evaluated at time t − T0,
which is reasonable due to T0-periodicity. However, due to
inherent interpolation, also the very recent activity of observers
is considered, which is particularly relevant for setting new
observers. In Theorem 1, we show that our method applies
this approach for constructing Ωa.

Theorem 1: At time t, for data streams with T0-periodic
patterns, the active observers set Ωa, as used by Algorithm 1,
contains observers with highest g(t).

Proof 1: Equation 2 constructs the set Ωa by selecting
observers from Ω, for which ℜ{

∑
n∈[Nbins]

Pω,n} is highest. If
Pω,n yields the FT of g(t) according to Lemma 1, the theorem
follows immediately, since ℜ{

∑
n∈[Nbins]

Pω,n} performs the
inverse FT at time t = 0 relative to the current time.

Theorem 1 allows us to use Ωa for assessing outlierness of
arriving data points by leveraging nearest-observer distances.
Hence, in line 1, N and Na are constructed. Based on [7], we
compute an outlier score with the median of distances to the x
closest observers. The final part of Algorithm 1 handles model
updating, which involves replacing the less “active” observer.
Updating of Pω,n in line 4 follows an exponential shape set
by time T . We show in Theorem 2 that replacing observers
proceeds with the same pace, which is necessary as observers
otherwise would not be able to build meaningful Pω,n values.

Theorem 2: For data streams exhibiting T0-periodic patterns,
Algorithm 1 on average samples k data points during a time
period T as new observers.

We prove the lemma in Appendix B. Note that the factor∑
ω∈N Pω,0/x∑
ω∈Ω Pω,0/k

occurring in line 6 of Algorithm 1 might be
omitted without invalidating Theorem 2. However, we include
it to promote representativity of the observers set. Hence,
underrepresented observers in a neighborhood cause the ob-
servation count in this neighborhood to increase, leading to a
higher sampling probability, while overrepresented observers
lead to a lower sampling probability. Moreover, this factor is
stronger during the transient starting phase, ensuring that the
model soon reaches its full size, but at the same time avoiding
that it is fulfilled with the first points, which in many cases
would build unrepresentative models.

During time T the model is replaced one time on average
according to Theorem 2. Since we use a fixed-size model,
an observer has to be removed when adding a new one,
picking the removal candidate based on its Pω,n. To avoid new
observers constantly replaced due to the stronger inertia of old
observers, we use an age-normalized observation count Pω,0

Hω

for selecting the observer to remove in line 7. By updating Hω

as depicted in line 3, Hω denotes the maximum Pω,0 that an
observer ω might have reached over time. Thus, Pω,0

Hω
∈ [0, 1],

where 1 is only scored if ω has always been in N since it
was assimilated in the model.

B. Interpreting the Learned Model

Direct analysis of patterns in streams from a manual per-
spective is inherently complicated. Experts quickly run into
difficulties regarding how to observe the data, what reference

points to take, for how long, how much data to use, how to
do this incrementally, etc. SDOoop solves all these issues in
a natural and elegant way. At any point in time, the observers
set Ω allows prompt access to highly representative data points
that additionally retain temporal information. The temporal
shape gω(t) of observed data points in a neighborhood of a
given observer ω can be efficiently recovered in terms of an
inverse FT,

gω(t) = ℜ
{∑

n∈[Nbins]Pω,n exp(jtn2π/T0)
}
. (5)

SDOoop is designed to be embedded in the data processing
pipeline of stand-alone systems. In other words, its primary
purpose is feeding subsequent analysis phases, e.g., visual-
ization or clustering techniques to extract further knowledge.
Nevertheless, Ω is commonly small enough for manual in-
spection, meaning that we can explore the set of observers
along different time spans and study their periodicities, but
also isolate a given instant in time to focus only on its stream
characteristics. By analyzing observers in Ωa, the data analyst
obtains an immediate depiction of the data model to easily
interpret both the ground of the outlierness scoring and how
data are (or are expected to be) as a whole.

C. Costs and Parameters

The computational cost lies primarily in the comparison of
incoming data points with the learned model. Assuming that
distance computation is O(D) with the number of dimen-
sions D, building Ωa (equation 2) implies time complexity
O(kNbins) +O(kD). Holding the model in memory requires
storing the observers ω and storing their observations Pω,n,
similarly resulting O(kNbins) + O(kD) as space complexity.
Therefore, per-point space and time complexity linearly de-
pend on model size k, which is a pre-fixed parameter. This
makes SDOoop suitable for big data with highly demanding
processing.

Temporal behavior is captured by T , T0 and the number of
frequency bins Nbins. T is the time constant of the exponential
windowing mechanism. It governs memory length, therefore
equivalent to the window length of sliding window algorithms.
T0 denotes the period of the FT base frequency. Periodicities

can be captured best if T0 is an integer multiple of expected
periodicities. For instance, in many real-world applications, it
might be reasonable a T0-value of one week, so that weekly
and diurnal patterns can be detected. Furthermore, to ensure
that the EWMA approximates a Fourier integral, T0 should
be reasonably smaller than T . Nbins determines the maximum
frequency that can be captured by the model, hence also fixing
the temporal resolution of the learned temporal shapes.
T , T0 and Nbins are intuitive parameters and can be easily

adjusted based on domain knowledge. qid, k and x are dis-
cussed extensively in [4] and [5]. Here suffice it to mention
that further experimentation confirms qid, k and x robustness,
meaning that performances are stable for a wide range of
values and that most applications work properly with default
configurations. The setting of k depends on the expected
variability and degree of representation, but several hundred
observers is sufficient in most cases. x inherits from nearest-
neighbor algorithms, with similar tuning strategies [8]. In our
experiments, values between k ∈ [100, 1000], x ∈ [3, 9] and
qid ∈ [0.1, 0.3] have shown excellent results.

IV. EXPERIMENTAL EVALUATION

In this section, we discuss the experimental evaluation of
SDOoop. Based on a proof of concept, we first demonstrate
its capability to detect contextual outliers. We then proceed
by benchmarking OD performances on public datasets. We
finally show the discovery and modeling of temporal patterns
in real-life cases.

A. Contextual Anomalies: Proof of Concept

For this proof of concept, we use MDCGen [7] to generate a
synthetic data stream of five clusters that vanish and reappear
at different times and periods. We add both spatial and
contextual outliers into the stream. Fig. 2 shows an excerpt
of the generated data stream with 0.5% of contextual outliers.
Hence, while normal outliers are distributed across the entire
feature space, outliers occurring out of phase fall in the same
spatial location as clustered data, but their time of appearance
does not meet the temporal shape of clustered data.

Time

0
20000

40000
60000 Dim

en
sio

n 1

0.0
0.2

0.4
0.6

0.8
1.0

Di
m

en
sio

n
2

0.0
0.2
0.4
0.6
0.8
1.0

Inliers (clustered data)

Time

0
20000

40000
60000 Dim

en
sio

n 1

0.0
0.2

0.4
0.6

0.8
1.0

Di
m

en
sio

n
2

0.0
0.2
0.4
0.6
0.8
1.0

Normal outliers

Time

0
20000

40000
60000 Dim

en
sio

n 1

0.0
0.2

0.4
0.6

0.8
1.0

Di
m

en
sio

n
2

0.0
0.2
0.4
0.6
0.8
1.0

Out-of-phase outliers

Fig. 2. Normal outliers and contextual outliers (aka out-of-phase outliers) in synthetic data for a fraction of contextual outliers of 0.5%.

0.00 0.02 0.04 0.06 0.08 0.10
Fraction of out-of-phase outliers

0.6

0.8

1.0

RO
C-

AU
C

Our method
SW-KNN
RRCT

Fig. 3. OD performance vs contextual outlier rate in the proof of concept.

In Fig. 3, we plot the area under the ROC curve (AUC)
for different ratios of contextual outliers to data points in one
active cluster. We compare SDOoop with two consolidated
OD methods for streaming data: SW-kNN (the sliding-window
implementation of kNN for OD [9]) and RRCT [2]. All
algorithms have been properly tuned to capture at least one
full period. The more outliers occur out of phase, the more
the performance of traditional algorithms plummets, whereas
our method retains the highest AUC at all times. This clearly
indicates that SDOoop is the only algorithm capable of de-
tecting contextual outliers.

B. OD Performance with Evaluation Datasets

To compare our method with state-of-the-art stream OD
algorithms, we selected popular OD datasets of sufficient
length and with timestamped data points.

Datasets and metrics. The KDD Cup’99 dataset [10]
aims at detecting network intrusions based on a number of
network and host features and, similar to previous work [11],
we considered User to Root (U2R) attacks as outliers over
normal traffic, resulting in 976,414 data points with an out-
lier proportion of 0.4%. Additionally, we selected the recent
SWAN-SF [12] dataset, which collects data about solar flares,
and used preprocessing scripts provided by Ahmadzadeh and
Aydin [13]. For SWAN-SF, we assigned a normal label to the
majority class and an outlier label to the remaining classes,
resulting in 331,185 data points with an outlier portion of
17.2%. In both experiments, we randomly sampled 50% of
the data stream for randomized hyperparameter search and
the other half for evaluation. For an overview of the ranges of
hyperparameters, we refer to the code repository of this paper.
Metrics for evaluation are Adjusted Average Precision (AAP),
Adjusted Precision at n (AP@n), and AUC [11].

Algorithms and experimental setups. We used the
dSalmon framework [14], which provides efficient versions
of several stream OD algorithms. Since ensembles commonly
exhibit superior accuracy, we used an ensemble of nine for
SDOoop, yet noticing almost no difference compared to a
single SDOoop detector.

OD performances. Experiment results in Table II show
how our method matches and even outperforms state-of-the-art
algorithms for streaming OD. The strongest competitor is RS-
Hash [15]. In the SWAN-SF case, SDOoop ranks among the
best performers, while, in the KDD Cup’99 dataset, it clearly
stands out, particularly in AAP and AP@n. The higher AP@n
also indicates that our method finds several true outliers that
pass unperceived for the competitors.

Disclosing insights about the data. Obtained results seem
consistent with data contexts. Considering how outliers have

TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT OD ALGORITHMS

SWAN-SF [12] KDD Cup’99 [10]
AAP AP@n AUC AAP AP@n AUC

SW-kNN 0.69 0.56 0.91 0.07 0.15 0.72
SW-LOF 0.15 0.12 0.58 -0.00 -0.00 0.67
LODA [16] 0.72 0.54 0.91 0.10 0.13 0.92
RS-Hash [15] 0.73 0.55 0.91 0.13 0.15 0.95
RRCT [2] 0.23 0.19 0.69 0.07 0.05 0.85
SDOoop 0.73 0.55 0.91 0.33 0.54 0.97

been defined in the SWAN-SF dataset, we do not expect that
outliers break possible temporal periodicities in samples from
solar flares. On the other hand, the KDD Cup’99 dataset
describes events in a computer network, which are expected to
exhibit strong temporal patterns due to human activity. Patterns
may be broken by attack traffic, leading to contextual outliers,
behaviors that can be spotted by our method. Here, the superior
detection of SDOoop not only indicates that the data show
temporal patterns, but also that some U2R attacks are indeed
contextual outliers.

C. Temporal Patterns in Machine-to-Machine Communication

Application context. We study network traffic captured
in a critical infrastructure, in particular, of an energy supply
company that connects charging stations for electric vehicles.
The network communication satisfies management, accounting
and maintenance aspects1. Network communication for these
purposes usually adopts the OCPP protocol. Due to the large
portion of machine-to-machine communications, we expected
to discover distinct periodic patterns.

Preprocessing and parameters. We preprocessed data with
the feature vector described in [17], resulting in 13 million
flows during a 1 month period. We parameterized the algo-
rithm using T = 1 week, 2000 frequency bins and T0 = 2000
minutes, obtaining a minimum period of 1 minute. We used
400 observers.

Capturing periodical patterns/clusters. Fig. 4 shows on
the left side examples for the frequency spectrum (magnitude)
learned by observers. Hence, different clusters show diverse
temporal patterns. While observer 1 shows no or just weak
periodicities, observer 2 shows a clear 5 minute periodicity
and observers 3 and 4 show a 10 minute periodicity. From the
learned FT, temporal shapes can be constructed in terms of an
inverse FT as depicted in equation 5. Fig. 4 also shows the
reconstructed temporal shape plotted over a 1 hour and 24 hour
period. Hence, beneath the periodicities already found when
inspecting the FT directly, the temporal shape for observers 3
and 4 additionally shows periodicities of a longer period of
approximately 2.5 hours.

Interpreting clusters in the application. The manual
examination of network flows represented by observers con-
firmed the soundness of discovered temporal patterns. For

1While we embrace reproducible research, issues related to confidentiality,
security and privacy prevent us from making these data publicly available.

0
50

100
Ob

s.
1

1e3

0
50

100

Ob
s.

2

0
25
50

Ob
s.

3

0 20 40 60
Frequency (1/h)

0
25
50

Ob
s.

4
0

25
50

Ob
s.

1

1e4

0
25
50

Ob
s.

2

0
25
50

Ob
s.

3

0 20 40 60
Time (minutes)

0
25
50

Ob
s.

4

0
25
50

Ob
s.

1

1e4

0
25
50

Ob
s.

2

0
25
50

Ob
s.

3

03:00 09:00 15:00 21:00
Time

0
25
50

Ob
s.

4

Fig. 4. Learned magnitude spectrum (left), one-hour temporal plots (middle) and 24-hour temporal plots (right) for four exemplary observers when processing
network data captured in an e-charging infrastructure.

example, observer 3 corresponds to ICMP pings that happen
regularly to ensure that network devices are alive. Observer
4 identifies DNS requests that charging stations perform to
resolve the name of the OCPP server to its IP address
and transmit meter readings. For observer 4, the periodicity
emerges from DNS caching, so that every second request for
transmitting meter readings can be performed without having
to perform a DNS lookup.

Observer 1 corresponds to protocol heartbeat messages.
The fact that it does not show a clear periodicity might be
due to the requesting devices not being time-synchronized
or by deviating device configurations. Alternatively, heartbeat
messages might take place with a very high frequency, so that
no periodicities can be observed at the analyzed time scale.

Identifying outliers in the application. Fig. 5 shows outlier
scores of points in time order. The manual inspection of flows
with highest outlierness (in the center of Fig. 5) revealed
that they are firmware update processes. Since updates took
place only during two days in the monitored time span, then
high outlier scores are consistent (yet they are not contextual
anomalies).

Learning stability. Finally, we investigated whether our
results meet the expected algorithm behavior with respect to
the sampling of new observers. Fig. 6 shows how many data
points have been sampled as new observers during the first two
weeks. With T = 1 week and k = 400 observers, 400/7 ≈ 57
observers should be sampled each day according to equation 2.
This theoretical conjecture shows good agreement with the

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Processed data point 1e7

0

500

1000

1500

Ou
tli

er
 sc

or
e

Fig. 5. Outlier scores of network data from an e-charging infrastructure.

empirical results. Fig. 6 also shows that the model is not
instantly filled with observers in the first hours, but it is instead
built up during the first days. Since data seen within the first
couple of hours might not be representative for the remaining
data, this transient behavior boosts the swift discovery of a
representative model while achieving a fast model buildup with
a high sampling rate at the beginning.

D. Discovery of Temporal Patterns: Darkspace Data

Application context and parameterization. We addition-
ally tested our method on the publicly available CAIDA “Patch
Tuesday” darkspace dataset [18]. During preprocessing, we
aggregated features by source IP address using the AGM fea-
ture vector [19], specifically proposed for analyzing darkspace
data. We applied our algorithm with T0 = 1 week and T = 10
weeks and 100 observers and 100 frequency bins, resulting in
a minimum period length of about 100 minutes.

Capturing and identifying periodical patterns/clusters.
Fig. 7 shows the magnitude of the Fourier coefficients of the
three strongest observers. Peaks in Fig. 7 occur at the 7th
and 14th frequency bins, which are diurnal and semi-diurnal
periodicities. This coincides with previous studies of the dark-
space [19] that, among others, identified Conficker.C worm
attacks or BitTorrent misconfigurations for diurnal patterns,
and horizontal scan, vertical scan and probing activities on
the UDP protocol for semi-diurnal patterns.

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Day after capture start

0

50

100

150

200

Sa
m

pl
ed

 o
bs

er
ve

rs

Fig. 6. Sampling of arriving data points as new observers when processing
network data captured in an e-charging infrastructure.

0 20 40 60 80 100
Frequency bin

0.0

0.5

1.0

1.5

2.0

Ob
se

rv
at

io
ns

1e7
1st observer
2nd observer
3rd observer

Fig. 7. FT of the top three observers after processing darkspace data.

V. RELATED WORK

The problem addressed in this paper is covered in diverse
fields, yet differing in some core aspects. In this section, we
provide an overview of related concepts and precedents to
place SDOoop in the landscape of existing work.

Time Series Analysis and Contextual Anomalies. A time
series is a temporal sequence of observations of specific
measurement variables. Time series have been studied in
multiple domains, e.g., finance and econometrics [20] weather
forecasting [21], electric load forecasting [22]. Traditionally,
time series have been analyzed with mathematical tools [20],
however, in multivariate time series complexity increases
dramatically and experts usually resort to nonlinear machine
learning, e.g., [21], [23] Multivariate time series and stream-
ing data are frequently considered synonyms, showing small
differences open to discussion [24].

Contextual anomalies have been tackled mainly in the time
series analysis domain [25], but here experts also emphasize
the low attention given to contextual anomalies in spite of
its relevance for cybersecurity, healthcare sensory and fraud
detection [26]. Latest research tends to expand the focus and,
besides point anomalies, face anomalous sequences within
the whole time series context, giving rise to fast model-
based detectors [27]. However, when considered, contextual
anomalies are confronted mainly from a univariate time series
perspective. An exception is the recent work by Pasini et
al. [28], which copes with low-dimensional multivariate time
series and proposes a global contextual variance score by
weighting feature-wise contextual variances based on Maha-
lanobis distances. Note that such approach assumes feature
independence though.

OD in Streaming Data The trend in OD of recent years
is to build models to process streaming data with constant
memory complexity. In addition to distance-based methods
like SDOstream [5], OD in streams is grounded on tree-
based methods [2], half-space chains [29], histograms [16],
randomized hashing [15], or simply based on nearest neighbors
in a sliding window [1]. A thorough comparison of these
methods can be consulted in [30].

When compared to SDOoop, beyond the core approach for
calculating point outlierness, the main difference is that earlier
algorithms establish a temporally evolving model (or a set of
reference data points) that is deemed stationary at time scales
smaller than a pre-fixed time parameter. Hence, contextual

TABLE III
CHARACTERISTICS OF OD ALGORITHMS FOR EVOLVING DATA STREAMS.

SW
-k

NN
SW

-L
OF

LODA
[1

6]
xS

tre
am

[3
2]

RS-
Has

h
[1

5]
RRCT

[2
]

SD
Ostr

ea
m

[5
]

SD
Ooo

p

Fixed time complex. ˜ × ✓ ✓ ✓ ˜ ✓ ✓
Fixed space complex. × × × ✓ ✓ × ✓ ✓
Interpretability ✓ ˜ × × × × ✓ ✓
Detect temp. patterns × × × × × × × ✓
Detect context. anom. × × × × × × × ✓

outliers, i.e. data points that occur at an atypical time (out-of-
phase), are wrongly classified as normal inliers. Another im-
portant property of OD methods is interpretability of returned
outlier scores. In fact, many modern techniques like forest-
based methods require space transformations that inevitably
sacrifice interpretability. In SDOoop, outlier scores can be
directly interpreted as distance-to-observers, i.e., distance-to-
normality. The model is small enough for manual inspection,
allowing the analyst to draw conclusions about the data mass
based on main model patterns. On the other hand, obtained
models are also suitable for stand-alone systems or frameworks
where knowledge must be integrated with decision-making
modules or other types of knowledge.

Table III shows a summarized comparison of recent algo-
rithms for evolving stream OD with regard to key properties.
SW-kNN and SW-LOF denote sliding-window implementa-
tions of the popular kNN [9] and LOF [31] algorithms.

Periodic Pattern Mining. The detection of periodicities
in sequences has also been investigated in the context of
periodic pattern mining [33]. Periodic pattern mining can be
applied to spatiotemporal data [34] to detect periodicities in
the movement of objects. In contrast, SDOoop is able to detect
periodicities of arbitrary clusters even if the corresponding data
points are mixed up with data points from other clusters with
different temporal patterns or no patterns at all. To the best of
our knowledge, this problem has not been explored before.

VI. CONCLUSION

Big data frequently arrives in data streams and requires
online processing and analysis. We proposed SDOoop, a
method for knowledge discovery in data streams that is able to
capture coexisting periodicities regardless of data geometries.
Our method performs a single pass through the data and
builds a fixed-size model consisting of representative point
locations along with their temporal behavior in Fourier space.
We showed equal or superior performances compared to state-
of-the-art algorithms when testing OD in established eval-
uation datasets. Moreover, we showed that our method can
be an important tool for understanding and visualizing the
spatiotemporal behavior of steadily arriving real-world data,
particularly in network security and critical infrastructures
communications.

REFERENCES

[1] F. Angiulli and F. Fassetti, “Detecting distance-based outliers in streams
of data,” in Proc. of the Sixteenth ACM Cong. on Information and
Knowledge Management. New York, NY, USA: Assoc. for Comp.
Mach., 11 2007, pp. 811–820.

[2] S. Guha, N. Mishra, G. Roy, and O. Schrijvers, “Robust random cut
forest based anomaly detection on streams,” in Int. Conf. on Mach.
Learn. PMLR, 2016, pp. 2712–2721.

[3] L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek,
M. Kloft, T. G. Dietterich, and K.-R. Müller, “A unifying review of
deep and shallow anomaly detection,” Proceedings of the IEEE, vol.
109, no. 5, pp. 756–795, 2021.

[4] F. Iglesias Vázquez, T. Zseby, and A. Zimek, “Outlier detection based
on low density models,” in ICDMW, 2018, pp. 970–979.

[5] A. Hartl, F. Iglesias, and T. Zseby, “SDOstream: Low-density models
for streaming outlier detection,” in ESANN 2020 proceedings, 2020, pp.
661–666.

[6] F. Iglesias, T. Zseby, A. Hartl, and A. Zimek, “Sdoclust: Clustering
with sparse data observers,” in Similarity Search and Applications,
O. Pedreira and V. Estivill-Castro, Eds. Cham: Springer Nature
Switzerland, 2023, pp. 185–199.

[7] F. Iglesias, T. Zseby, D. Ferreira, and A. Zimek, “Mdcgen: Multidi-
mensional dataset generator for clustering,” Journal of Classification,
vol. 36, no. 3, pp. 599–618, 2019.

[8] P. Hall, B. U. Park, R. J. Samworth et al., “Choice of neighbor order in
nearest-neighbor classification,” The Annals of Statistics, vol. 36, no. 5,
pp. 2135–2152, 2008.

[9] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” SIGMOD Rec., vol. 29, no. 2,
p. 427–438, may 2000.

[10] “Kdd cup 1999 data,” http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html, accessed: 2021-03-04.

[11] G. O. Campos, A. Zimek, J. Sander, R. J. Campello, B. Micenková,
E. Schubert, I. Assent, and M. E. Houle, “On the evaluation of
unsupervised outlier detection: Measures, datasets, and an empirical
study,” DAMI, vol. 30, no. 4, pp. 891–927, 2016.

[12] R. A. Angryk, P. C. Martens, B. Aydin, D. Kempton, S. S. Mahajan,
S. Basodi, A. Ahmadzadeh, X. Cai, S. Filali Boubrahimi, S. M. Hamdi,
M. A. Schuh, and M. K. Georgoulis, “Multivariate time series dataset
for space weather data analytics,” Scientific Data, vol. 7, no. 227, 2020.

[13] A. Ahmadzadeh and B. Aydin, “Multivariate Timeseries Feature
Extraction on SWAN Data Benchmark (SWAN Features),” 2020,
GSU Data Mining Lab, Bitbucket repository. [Online]. Available:
https://bitbucket.org/gsudmlab/swan features

[14] A. Hartl, F. Iglesias, and T. Zseby, “dSalmon: High-speed anomaly
detection for evolving multivariate data streams,” in Performance Evalu-
ation Methodologies and Tools (VALUETOOLS 2023). Springer, 2024,
pp. 153–169, https://github.com/CN-TU/dSalmon.

[15] S. Sathe and C. C. Aggarwal, “Subspace outlier detection in linear time
with randomized hashing,” in 2016 IEEE 16th Int. Conference on Data
Mining (ICDM). New York, NY, USA: IEEE, 2016, pp. 459–468.

[16] T. Pevnỳ, “Loda: Lightweight on-line detector of anomalies,” Machine
Learning, vol. 102, no. 2, pp. 275–304, 2016.

[17] N. Williams, S. Zander, and G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification,” ACM SIGCOMM Computer Communication Review,
vol. 36, no. 5, pp. 5–16, 2006.

[18] CAIDA, “The UCSD network telescope ”patch tuesday“ dataset,” http:
//www.caida.org/data/passive/telescope-patch-tuesday dataset.xml, acc.:
2021-03-09.

[19] F. Iglesias and T. Zseby, “Pattern discovery in internet background
radiation,” IEEE Trans. on Big Data, vol. 5, no. 4, pp. 467–480, 2017.

[20] J. D. Hamilton, Time series analysis. Princ., NJ, USA: Princeton Univ.
press, 2020.

[21] G. Mahalakshmi, S. Sridevi, and S. Rajaram, “A survey on forecasting
of time series data,” in Int. Conf. on Comp. Tech. and Int. Data Eng.,
2016, pp. 1–8.

[22] N. I. Sapankevych and R. Sankar, “Time series prediction using support
vector machines: A survey,” IEEE Computational Intelligence Magazine,
vol. 4, no. 2, pp. 24–38, 2009.

[23] T. W. Liao, “Clustering of time series data—a survey,” Pat. Rec., vol. 38,
no. 11, pp. 1857–1874, 2005.

[24] J. Read, R. A. Rios, T. Nogueira, and R. F. de Mello, “Data streams are
time series: Challenging assumptions,” in Intelligent Systems, R. Cerri
and R. C. Prati, Eds. Cham: Springer International Publishing, 2020,
pp. 529–543.

[25] K. Shaukat, T. M. Alam, S. Luo, S. Shabbir, I. A. Hameed, J. Li,
S. K. Abbas, and U. Javed, “A review of time-series anomaly detection
techniques: A step to future perspectives,” in Adv. in Inf. & Com.,
K. Arai, Ed. Springer, 2021, pp. 865–877.

[26] K. Golmohammadi and O. R. Zaiane, “Time series contextual anomaly
detection for detecting market manipulation in stock market,” in 2015
IEEE International Conference on Data Science and Advanced Analytics
(DSAA), 2015, pp. 1–10.

[27] P. Boniol, J. Paparrizos, T. Palpanas, and M. J. Franklin, “Sand: Stream-
ing subsequence anomaly detection,” Proc. VLDB Endow., vol. 14,
no. 10, p. 1717–1729, jun 2021.

[28] K. Pasini, M. Khouadjia, A. Samé, M. Trépanier, and L. Oukhellou,
“Contextual anomaly detection on time series: A case study of metro
ridership analysis,” Neural Comput. Appl., vol. 34, no. 2, p. 1483–1507,
jan 2022.

[29] S. Tan, K. Ting, and F. T. Liu, “Fast anomaly detection for streaming
data,” in 22nd Int. Joint Conf. on Artificial Intelligence, 2011, pp. 1511–
1516.

[30] F. Iglesias, A. Hartl, T. Zseby, and A. Zimek, “Anomaly detection in
streaming data: A comparison and evaluation study,” ESWA, vol. 233,
p. 120994, 2023.

[31] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, p. 93–104,
May 2000.

[32] E. Manzoor, H. Lamba, and L. Akoglu, “xStream: Outlier detection in
feature-evolving data streams,” in Proc. of the 24th ACM SIGKDD Int.
Conf. on Know. Disc. & Data Mining. New York, NY, USA: Assoc.
for Comp. Mach, 2018, p. 1963–1972.

[33] P. Fournier-Viger, J. C.-W. Lin, R. U. Kiran, Y. S. Koh, and R. Thomas,
“A survey of sequential pattern mining,” Data Science and Pattern
Recog., vol. 1, no. 1, pp. 54–77, 2017.

[34] D. Zhang, K. Lee, and I. Lee, “Periodic Pattern Mining for Spatio-
Temporal Trajectories: A Survey,” in 2015 10th Int. Conf. on Int. Systems
and Knowledge Engin. (ISKE). New York, NY, USA: IEEE, Nov. 2015,
pp. 306–313.

APPENDIX A
PROOF OF LEMMA 1

Let io ∈ N denote the index of a data point, for which ω is
contained in N and ic is the index of the currently processed
data point, i.e., io < ic. Then, the contribution of io to Pω,n

according to line 4 of Algorithm 1 has been multiplied by
Πic

i=io+1

(
exp(−T−1 + jn2π/T0)

)ti−ti−1
=

(
exp(−T−1 +

jn2π/T0)
)tic−tio . Summing over all points that have arrived

in ω’s neighborhood, we can write

E{Pω,n} =
∫ t

−∞
g(τ)

(
exp(−T−1 + jn2π/T0)

)t−τ

dτ.

Splitting the integral into intervals of length T0, we obtain

E{Pω,n} =
∞∑
l=0

∫ t

t-T0

g(τ -lT0)
(
exp(-T -1 + jn2π/T0)

)t-τ -lT0dτ

=
(∞∑

l=0

exp(-T -1lT0)
)∫ t

t-T0

g(τ)
(
exp(-T -1 + jn2π/T0)

)t-τ
dτ

due to T0-periodicity of g(t) and exp(jn2π) = 1. Abbreviat-
ing the constant factor and substituting τ ′ = τ − t, we obtain

E{Pω,n} = c

∫ 0

−T0

g(τ ′ − t)(exp(−T−1 + jn2π/T0))
−τ ′

dτ ′

T≫T0≈ c

∫ 0

−T0

g(τ ′ − t) exp(−jn2πτ ′/T0))dτ
′.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://bitbucket.org/gsudmlab/swan_features
https://github.com/CN-TU/dSalmon
http://www.caida.org/data/passive/telescope-patch-tuesday_dataset.xml
http://www.caida.org/data/passive/telescope-patch-tuesday_dataset.xml

APPENDIX B
PROOF OF THEOREM 2

Taking line 6 in Algorithm 1 as starting point, the
probability of selecting a newly seen point as observer
is min

(
1, k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

)
. Since we target specifi-

cally data streams with high rates of arriving data points,
we can safely assume this probability to be small. Hence,
Pr

{
1 < k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

}
is negligible and we can

write for the average probability of sampling a new point
as observer Ps ≈ E

{
k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

ti−tiLAO
i−iLAO

}
. Under the

same assumption, we observe that the term ti−tiLAO
i−iLAO

de-
pends on the current time, but, since points belonging to
different neighborhoods arrive in an interleaved manner, does
not depend on a point’s neighborhood. Since

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

does not depend on time, we can split the term to Ps ≈
E
{

k2

Tx

∑
ω∈N Pω,0∑
ω∈Ω Pω,0

}
E
{

ti−tiLAO
i−iLAO

}
due to stochastic indepen-

dence of both terms.
∑

ω∈N Pω,0/x expresses the average
observation count in the current neighborhood. The algorithm
implements several mechanisms to make the observer density
agree with the time-averaged point density, rendering the time-
averaged local average observation count E

{∑
ω∈N Pω,0/x

}
equal to the total average observation count of all observers∑

ω∈Ω Pω,0/k, hence Ps ≈ k
T E

{
ti−tiLAO
i−iLAO

}
= k

T IAT, where

the average inter-arrival time of two data points is termed IAT.
During a time period of T , T/IAT data points arrive, yielding
an average number of sampled points of PsT/IAT = k.

	Introduction
	Observers-based Outlier Detection
	SDOoop
	Algorithm Construction
	Interpreting the Learned Model
	Costs and Parameters

	Experimental Evaluation
	Contextual Anomalies: Proof of Concept
	OD Performance with Evaluation Datasets
	Temporal Patterns in Machine-to-Machine Communication
	Discovery of Temporal Patterns: Darkspace Data

	Related Work
	Conclusion
	References
	Appendix A: Proof of Lemma 1
	Appendix B: Proof of Theorem 2

