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Abstract—In many scenarios like wireless Internet access or
encrypted VPN tunnels, encryption is performed on a per-packet
basis. While this encryption approach effectively protects the
confidentiality of the transmitted payload, it leaves traffic patterns
involving inter-arrival times and packet lengths observable, e.g.,
to eavesdroppers on the air interface. It is a widespread belief
that by only observing interleaved packets of different parallel
flows, analysis and classification of the corresponding traffic by
an eavesdropper is very difficult or close to impossible.

In this paper, we show that it is indeed possible to separate packets
belonging to different flows purely from patterns observed in the
interleaved packet sequence. We devise a novel deep recurrent
neural network architecture that allows us to detect individual
anomalous packets in a flow. Based on this anomaly detector, we
develop an algorithm to find a separation into flows that minimizes
the anomaly score indicated by our model. Our experimental results
obtained with synthetically crafted flows and real-world network
traces indicate that our approach is indeed able to separate flows
successfully with high accuracy.

Being able to recover a flow’s packet sequence from multiple
interleaved flows, we show with this paper that the common packet-
level encryption might be insufficient in scenarios where high levels
of privacy have to be achieved. On the defender’s side, our approach
constitutes a valuable tool in encrypted traffic analysis, but also
contributes a novel neural network architecture in the field of
network intrusion detection in general.

Index Terms—tunnel encryption, encrypted traffic analysis,
deanonymization, deep learning

I. INTRODUCTION

Data encryption forms an important pillar of modern secure

network communication. A frequent encryption paradigm, we

will refer to as tunnel encryption in this paper, involves inter-

leaving and encrypting packets from distinct applications for

transmission over a common link. For instance, for Virtual Private

Network (VPN) connections, packets from several applications

or even users are transmitted over a shared link. Another example

concerns wireless Internet access. It is common for companies

and private households to perform Internet access using a wireless

network implemented using the IEEE 802.11 [1, 2, 3, 4, 5] family

of standards. Since wireless 802.11 networks have no real barriers

of physical access, strong encryption is crucial for protecting both

the users’ sensible information and their privacy, e.g., regarding

application usage behavior. But is strong frame-level encryption

sufficient for protecting the users’ invaluable privacy from prying

eyes? As we will show in this paper, privacy is still at risk.

In network intrusion detection, packets are commonly divided

into flows, where a flow is a sequence of packets that share

certain properties [6]. Flows aim to reflect fundamental functional

building blocks of network communication like TCP connections,

UDP streams or the communication with a certain remote destina-

tion. Since individual packets do not provide enough information,

it is possible to perform classification of network traffic only

by dividing observed traffic into flows. Treating the entirety of

observed traffic as one flow therefore might shatter the success

of traffic classification, but at least shadow low-bandwidth

communication in front of high-bandwidth communication.

Encryption on a frame level implies as a fundamental limita-

tion that transmission patterns of generated traffic, like packet

lengths or inter-arrival times (IATs) between packets, are openly

accessible by anyone monitoring, e.g., the air interface. While it

has been shown previously that these patterns are sufficient for

classifying encrypted traffic if obtained from a single application

flow, the problem remained that in real traffic packets from

various flows arrive in an interleaved fashion due to mixing

packets from multiple applications, impeding an in-depth traffic

analysis.

The key to powerful analysis of encrypted network traffic is

thus the ability to assemble observed frames to their respective

flows, which then can be analyzed using established machine

learning methods. This is a non-trivial task, since features that

are typically used for this purpose, like port numbers and IP

addresses, are not available if traffic is encrypted on a lower layer.

In this paper, we approach this task by building an LSTM-based

neural network (NN) model of individual packets’ features in

network communication. In a second step, we then devise an

algorithm for finding a separation into flows that maximizes the

likelihood for flows to be genuine.

The problem studied in this paper is not limited to the analysis

of encrypted wireless traffic and VPN tunnels, but addresses a

general encryption paradigm that we subsume under the term

tunnel encryption. In many cases, such techniques are used

for the very purpose of providing better privacy to the user,

which highlights the impact of any method that is able to extract

information about the used applications. Even when stacking

such encryption techniques the requirements we postulate in this

work in many cases remain valid, reinforcing the relevance of the

studied problem.

With this paper, we make several contributions:

• We introduce the problem setting of separating encrypted

tunnel traffic into individual flows and devise appropriate

evaluation metrics.

• We show that, under certain common conditions it is theoreti-

cally possible to assign individual packets in encrypted tunnel
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Fig. 1. Separating flows in encrypted tunnel traffic.

traffic to network flows, allowing to apply traditional methods

for classifying flows as illustrated in Fig. 1. This finding

weakens an inherent widespread belief that tunnel encryption

is able to provide strong privacy properties. We aim to raise

awareness for this problem in particular in environments

where security and privacy are of major importance.

• We implement our proposed approach, evaluate it on several

publicly available real-world network traces and carefully

analyze its abilities based on synthetically crafted network

flows. We thus show that packets from interleaved flows can

indeed be separated into their respective flows with good

accuracy.

• By providing an approach for analyzing encrypted tunnel

traffic, we lay the groundwork for implementing intrusion

detection on encrypted tunnel traffic. The identification of

unwanted traffic in VPN tunnels despite the presence of

benign traffic can be a crucial tool in early attack detection.

After highlighting related research efforts in Section II, we

show in Section III under what circumstances encrypted traffic

shows patterns that allow profound analysis. In Section IV, we

construct our method for separating encrypted packets belonging

to different flows. In Section V, we then show based on

experimental results the feasibility of our proposed approach.

Finally, Section VI discusses defense strategies to enhance the

security of network communication.

To enable reproducibility and encourage experimentation, we

make our code available at https://gitlab.tuwien.ac.at/e389-cnpub/

separatingflows/.

II. RELATED WORK

Analysis and classification of network traffic is a well-known

research area. A substantial body of research exists on the

analysis of encrypted traffic (e.g., [7, 8, 9]). We refer to survey

papers [10, 11] on this subject for a comprehensive overview.

While these papers demonstrate that classification of encrypted

flows is possible even when only meta information like packet

sizes and IATs is known, it is common to the majority of existing

research to assume that the separation into flows has been done

in advance. This is a reasonable assumption when encryption is

done only on the transport layer, but this approach is unable to

handle more comprehensive encryption techniques that we target

in this paper.

Some research has been conducted on deanonymization of

VPN traffic. Appelbaum et al. [12] outline several strategies

an attacker might use to deanonymize a victim’s VPN traffic,

distinguishing attackers in several positions and with several

capabilities. Unlike targeting the patterns of the encrypted traffic

itself, the paper reveals several scenarios for how an attacker

can make use of leaking information. Similarly, Bui et al. [13]

highlight shortcomings in the client configuration of commercial

VPN providers that might allow to attack the VPN’s encryption.

Of particular interest to the research community are

deanonymization attacks on the Tor network, since Tor aims

to achieve the very purpose of providing strong anonymity.

The papers [14, 15] provide a recent overview of approaches

to deanonymize Tor traffic. Besides attacks that are based on

leaking information through side channels and attacks that are

based on actively exploiting shortcomings of client applications,

also several passive attacks on Tor have been proposed. However,

these passive attacks are usually based on associating the exit

nodes’ connections with the users’ connections by leveraging

attacker-controlled Tor nodes. This scenario is very different

from our setting.

Unlike previous research, in this paper we base our analysis on

observed encrypted traffic directly, even if it consists of packets

from multiple interleaved flows. A related research effort has

been conducted by Meghdouri et al. [16], who showed that by

using a deep NN, it is possible to accurately identify the number

of flows contained in an encrypted VPN tunnel, hence disclosing

information about the encrypted traffic. In this paper, we go one

step further and focus on the problem of separating packets in

encrypted tunnel traffic into their respective flows. To the best of

our knowledge, this problem has not been investigated before.

III. TUNNEL ENCRYPTION TECHNIQUES

In several network traffic encryption techniques, packets from

distinct flows are interleaved when being transmitted over an

encrypted link. In this paper, we designate such techniques as

tunnel encryption techniques, derived from the most apparent

scenario of VPN tunnel encryption.

We show an illustrative example in Fig. 1. In Fig. 1, a user uses

two applications that originate one network flow each. Instead of

transmitting them directly over the Internet, he uses a VPN tunnel

for secure transmission to a remote destination. An attacker

on the path therefore can capture the packets, but can neither

decrypt the packets’ contents nor does he know which flows

the packets belong to. Hence, before analyzing individual flows,

it is necessary to associate individual packets to their flows,

which is the task we explore in this paper. In Fig. 1, the attacker

then leverages the found separation to perform classification and

detect the type of applications that are used. This procedure might

constitute steps in a larger attack chain, e.g., if the knowledge of

used applications is used for launching a known-plaintext attack

on the used cipher.

Our method for separating flows is based on a NN model

trained in advance on non-interleaved network flows showing

https://gitlab.tuwien.ac.at/e389-cnpub/separatingflows/
https://gitlab.tuwien.ac.at/e389-cnpub/separatingflows/
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Fig. 2. The architecture of our deep learning model.

patterns as present in the analyzed packet sequence. If the

potentially used applications and services are known, it is a

viable assumption that training data can be acquired by capturing

traffic of the respective applications beforehand. An advantage

compared to many other scenarios of machine learning in the

context of network data is that only benign traffic is needed and

no expensive labeling needs to be done.

To be able to perform the actual separation procedure, we

require that an upper bound for the number of flows in the

analyzed packet sequence is known. It has been shown that the

number of flows in encrypted tunnel traffic can be estimated

using machine learning methods [16]. Additionally, we postulate

three requirements for the encrypted traffic:

• Individual packets are distinguishable in encrypted traffic.

• Packet lengths can be deduced from encrypted traffic.

• Packet IATs can be deduced from encrypted traffic.

From a general viewpoint, it is surprisingly likely that these

requirements are satisfied for traffic encryption in today’s

packet switched networks. Reasons for this are that (1) protocol

designers are usually interested in avoiding unnecessary latency

in packet forwarding and (2) protocol designers additionally

are usually interested in saving link capacity. In the light of

(1), to reduce latency, implementations in many cases perform

encryption on a per-packet basis and process and forward a packet

as soon as it is received. Hence, IATs of encrypted packets can be

used as very good estimate of the IATs of unencrypted packets.

Also aggregation of several packets might introduce additional

latency and therefore is not frequently used. Considering (2), it is

also unlikely that random padding of substantial length is added

to a packet, since this would increase the required link capacity.

Hence, the size of an unencrypted packet can be deduced from

an encrypted packet by simply subtracting encryption overhead.

We have verified that the requirements discussed above

are satisfied for practical security protocols. In particular, the

requirements are satisfied in many common use cases of VPN

tunnels implemented using IPsec [17] or WireGuard [18], or for

encryption of wireless 802.11 networks. Even when stacking

multiple encryption techniques, the necessary patterns in many

cases remain available to an eavesdropper.

IV. ENCRYPTED FLOW SEPARATION

We approach the task of separating encrypted traffic in two

steps. First, we develop an anomaly detector that is able to

identify individual anomalous packets in a flow, allowing to

detect if packets from different flows have been shuffled in a

provided sequence. Second, we then search for the separation

of flows that minimizes the total anomalousness of observed

packets. We now discuss both problems in detail.

A. Packet-based Anomaly Detection

For separating packets into flows, we first develop a method

to assess whether a flow looks normal or shows unusual patterns

that might be the result of mixing packets of distinct flows. For

this, we build a packet-based anomaly detector that is loosely

based on Loda [19], a well-known method for on-line anomaly

detection in data streams. In Loda, k Random Projections (RPs)

are generated from the feature space and a histogram is built

from the data for each RP to establish a model of normality.

If pi(·), i ∈ {1, . . . , k} denote the built histograms, wi denote

projection vectors and x denotes the feature vector, Loda uses

the anomaly score

s(x) = −1

k

∑k

i=1
ln pi(x

T
wi), (1)

which is shown to coincide with the logarithmic joint probability

density of projected features under the assumption that projected

features are stochastically independent. The set of histograms of

RPs, hence, constitutes an ensemble of weak learners, which is

shown to provide a strong detector of anomalies [19].

For our intended scenario, we cannot use Loda in a straight-

forward way, since we require assessing anomalousness on a

per-packet basis, thus incorporating the position in the packet’s

flow. Depending on the packets seen previously in the flow,

the model’s histograms have to be updated to reflect observing

different packet feature values depending on the type of flow

and depending on feature values seen previously in the flow. To

account for these requirements, instead of static histograms, we

use a deep NN to compute histograms that are used for assessing

anomalousness of packets.

Fig. 2 shows our network architecture. We use a deep archi-

tecture alternatingly deploying 4 fully connected leaky ReLu

(LReLu) layers and 3 LSTM layers for extracting information

from the sequence of packets. For each dimension of the k-

dimensional projected feature vector, we connect one softmax

layer to the 4th LReLu layer. Considering these NN outputs,

we consider the feature vector values of the respective next

packet in the flow and perform RPs x̃
T
wi with i = 1, . . . , k

from the z-score normalized feature vector x̃ of the next

packet. Normalization parameters for scaling are obtained from

training data and elements of projection vectors wi are chosen

independently at random fromN (0, 1). For each histogram, i.e.



each dimension of the projected feature vector, the value is then

discretized into 50 bins to form a one-hot encoded label the NN is

trained on using categorical cross entropy loss. We used Adam as

optimizer for NN training and trained the network to a minimum

of validation loss.

Although NN calibration has recently been questioned [20],

NNs are generally understood as probabilistic classifiers, so that

the learned output of softmax layers can be interpreted as to

indicate probability for observing a certain discretized projection

value, and, hence, can be pictured as extension of Loda’s static

histograms to our setting, where we require a probabilistic model

of the next packet’s feature values.

1) Features: With the assumptions made in the previous

Section III, the observed network trace consists of a sequence of

packets, where for each packet the time of arrival, its length and

the direction of transmission (received/sent) is observed.

Each packet i is represented by a feature vector of the form

x
(i)=

(

PD, ln
Pkt. length

1Byte
, ln

IAT+1µs

1ms
, ln

DIAT+1µs

1ms

)T

.

(2)

Here, packet direction (PD) is 0 if the packet was received and

1 if it was sent. With IAT we specify the difference in arrival

time of packet i to the flow’s previous packet independent of

packet direction. In addition to the IAT, we use the directional

IAT (DIAT), which specifies the time difference to the flow’s

previous packet travelling in the same direction. While the plain

IAT can provide additional information about traffic patterns by

including server response times, the DIAT might provide more

accurate models of traffic patterns, since it avoids the influence

of round-trip latency to the remote destination.

We note that when observing only encrypted traffic, the feature

vector in equation 2 cannot be computed in advance, since the

association of packets to flows has to be known to be able to

compute IATs. Hence, as we will discuss later, our algorithm

forms x(i) on-the-fly during algorithm execution.

For packet lengths and IATs, we consider relative differences

of feature values to yield more information than absolute

differences. This assertion holds particularly for IATs and DIATs,

which frequently range from fractions of a second to time spans

of more than an hour. As shown in equation 2, we therefore

process packet lengths and IATs in logarithmic scale to be able

to cover a wide range of feature values and to transform relative

differences to absolute differences, which eventually are relevant

when discretizing values into histograms as described above.

2) Sequential Dependence: For being able to reassemble

packets into their flows based on an anomaly score, the major

requirement for the anomaly score is to detect an unusual se-

quence of packet feature values. Hence, instead of just assessing

whether the combination of the individual packet’s feature values

is reasonable, it is more important to assess whether these feature

values are expected based on packets seen previously in the flow.

Mechanisms leveraged by our proposed method for achieving

this goal are threefold:

1) Our NN directly predicts the probability distribution of packet

features observed in the next packet. In this probability

Algorithm 1 Solving for packet associations a.

1: Set A ← {()}, P() ← 0.

2: Set S(),f ← 0,H(),f (·) = 1∀ f ∈ {1, . . . , F}.
3: for each packet i = 1, . . . , n do

4: for each a ∈ A and each flow f = 1, . . . , F do

5: Set ã←
(

a

f

)

and add ã to A.

6: Set Pã ← Pa − 1
k

∑k

j=1 lnHa,f (x
(i)T

wj)

7: Evaluate the NN with state Sa,f and features x(i), result-

ing in new state Ŝ and histograms Ĥ(·).

8: Set H
ã,f̃ , Sã,f̃ ←

{

Ĥ, Ŝ, if f̃ = f

H
a,f̃ , Sa,f̃ , otherwise

9: end for

10: Truncate A to R combinations a with highest Pa.

11: Remove entries Pa,Ha,f , Sa,f if a /∈ A.

12: end for

13: Output â = arg max
a∈APa.

distribution, an unexpected packet will be assigned a low

probability and, hence, a high anomalousness.

2) Since the NN is composed of recurrent units, feeding a

wrong sequence of packet features as input is likely to

impair the NN’s prediction. This principle is related to

anomaly detection based on autoencoders. Autoencoders fail

to reconstruct the input well unless it corresponds to patterns

observed in training data.

3) As variants of our method, we consider predicting packet

features of the next two packets and of just the next packet.

Probability distributions predicted by our NN are able to

express stochastic dependency of used features. If features are

composed of two consecutive packets, a high joint probability

indicates that a two-packet sequence is correct. In other words,

even if our NN was not able to make any sense of input

features and only learned a constant probability distribution

as output, maximizing the joint probability of two consecutive

packets’ features would still provide some information about

genuine packet sequences.

B. Solving for Packet Associations

Being able to assess anomalousness of packets in a flow, the

second step is to find a separation of packets into flows that

minimizes total anomalousness. We use maximum likelihood

estimation based on an algorithm similar to the Viterbi algo-

rithm [21]. To this end, let F ∈ N denote an upper bound for

the number of flows in the processed traffic and n ∈ N the

total number of observed packets. We define an Association

Vector (AV) a ∈ {1, . . . , F}n, which expresses the unknown

information of which packet belongs to which flow, i.e. ai
indicates the flow 1, . . . , F packet i belongs to. We are interested

in finding the most likely AV based on observed packet features

x
(i), â = arg max

a
P
(

a

∣

∣

x
(1), . . . ,x(n)

)

. Assuming uniform

a-priori probability and, hence, performing maximum likelihood

estimation, â can be written

â = arg max
a

∑n

i=1
lnP

(

x
(i)
∣

∣

x
(1), . . . ,x(i−1),a

)

. (3)



P
(

x
(i)|x(1), . . . ,x(i−1),a

)

can be evaluated from the his-

tograms generated by our NN as indicated by equation 1. Hence,

while equation 3 theoretically specifies how to compute â based

on our NN model, it requires on the order of Fn NN evaluations,

which in practical scenarios is infeasible due to the exponential

increase with n. To solve for â, we thus use an algorithm that

approximates the exhaustive search through {1, . . . , F}n by

truncating the set of considered combinations to the best R ∈ N

combinations after each processed packet with, e.g., R = 1000.

This approach is similar to the Viterbi algorithm [21], where the

main difference is that we use a continuous state space in this

paper. Algorithm 1 shows the algorithm used for finding the â

that maximizes P
(

a|x(1), . . . ,x(n)
)

.

1) Space and Time Complexity: Time complexity can be

analyzed based on Algorithm 1. In Algorithm 1, time complexity

is clearly dominated by NN evaluations in line 7. Since A is

pruned to R AVs in line 10, each packet involves at most RF
loop iterations. Hence, NN evaluations incur a time complexity

of O(RnF ). An important aspect is, however, that the two inner

loops can be easily executed in parallel. In more detail, NN

evaluations can be combined into a single batch and be computed

highly efficiently by leveraging GPU computing capabilities.

Considering space complexity, during algorithm execution we

need to store NN states and one histogram per projection

dimension for F flows for |A| AVs, which involves a complexity

of O(RF ). Since additionally the AVs themselves need to be

stored, we obtain a total space complexity of O(RF ) +O(Rn).

V. EXPERIMENTS

A. Datasets

We base our experimental evaluation on both, a synthetically

created dataset and real-world network data. As pointed out in

Section III, many tunnel encryption techniques allow to deduce

unencrypted packet lengths and IATs from observed tunnel traffic.

For our experimental evaluation, it is therefore not necessary to

use actual encrypted tunnel traffic, but flows can be artificially

interleaved for testing the approach. Our experiments are thus

agnostic to the used encryption technique.

1) Synthetic data: The benefit of synthetically created flows

is allowing us to closely analyze performance with respect to

patterns in the data. For creating the synthetic dataset, we used py-

virtnet [22] to set up a simulated network consisting of two hosts

connected over one router, where the one-way-delay between

both hosts has a value of 20ms with a standard deviation of 2ms.

Using this simulated network, we created three types of flows:

• A steady stream consisting of UDP packets transmitted with

a constant inter-packet interval of 50ms. We used packet

sizes of 60B, 100B, 150B or 200B, where packet sizes are

constant throughout a flow. Due to the distinctive traffic

pattern we expect this traffic type to deliver best results.

However, due to the simulated jitter also this traffic type

is no trivial scenario. In practice, this type of traffic can be

observed when streaming audio or video data.

• A bursty UDP stream consisting of blocks of data. Again,

we transmitted packets with a inter-packet interval of 50ms

and packet sizes of 60B, 100B, 150B or 200B, but every 15

packets we added an additional random inter-burst interval

between 1.5s and 2.5s. This type of traffic can similarly

be observed for multimedia traffic, depending on the used

compression schemes.

• TCP traffic following a request-response pattern. From a

client application we sent requests with sizes of 2500B,

resulting in a server’s application response with 10kiB. We

sequentially sent multiple requests on each TCP connection

with a random delay between 3s and 30s. We consider this

scenario to reflect traffic observed during web browsing, but

also many other protocols based on TCP.

We used the RDM client [23] for generating UDP streams. We

captured the generated traffic on the server side of the simulated

network and used go-flows [24] to extract packet features for the

flows in the captured traces based on the popular bidirectional

5-tuple flow key. All flows in the synthetic dataset consist of

approximately 100 packets, avoiding bias of evaluation metrics

described in Section V-B.

2) Real-world data: In addition to synthetically generated

data, we used captured real-world network traces. To this end,

we used the CIC-IDS-2017 [25] and UNSW-NB15 [26] datasets,

but only selected benign traffic samples, since we consider only

benign traffic to be representative for4 traffic a normal user would

generate.

Additionally, we created a dataset from network traces from the

MAWI traffic archive [27]. We obtained traces from samplepoint

F, which yields the most recent captures and used a timespan

from June 2021 to July 2021. Since traces in MAWI are obtained

from a major Japanese backbone, they are highly diverse. Hence,

using the entirety of flows is likely to fail. Furthermore, for

a first evaluation we aim to avoid performing evaluation on

traffic with unknown patterns and, instead, are interested in

performing evaluation on traffic from which we expect a certain

regularity. For this reason, we selected UDP traffic with ports

8801, 3480 and 9000, belonging to the videoconferencing tools

Zoom, Microsoft Teams and Cisco Webex, respectively. To obtain

realistic TCP traffic meeting the same constraint, we additionally

captured traffic in a charging infrastructure for electric vehicles

and added it to the MAWI traces. The predominant protocol in

this case is the HTTP-based OCPP [28] protocol. Due to the high

amount of machine-to-machine communication, we on the one

hand expect this traffic to exhibit distinct patterns, but on the

other hand we expect a certain amount of randomness due to

randomness of the charging station’s uplink and interaction with

other network participants, making these network traces a good

candidate for benchmarking our method.

B. Performance Metrics

Intuitively, we are interested in the percentage of packets of

a flow in the ground truth that are correctly assigned to the

respective flow. However, as long as all the flow’s packets (and

no further packets) are assigned to the same flow, we do not

care which flow it is. Hence, for evaluating accuracy we ignore

permutations of flows, i.e.

Accuracy = max
α∈SF

1

N

∣

∣

∣

{

i : ai = α (âi)
}
∣

∣

∣
, (4)



where N denotes the sequence’s length and SF denotes the set

of permutations of length F . Furthermore, a and â denote the

ground truth AV and the predicted AV, respectively.

A scenario that will lead to a particularly bad accuracy score

is a prediction where two otherwise correctly predicted flows

are swapped in the middle of the flows. In this case, a single

incorrect transition between flows might lead to a worst possible

accuracy of 0.5. Since we are interested in the prevalence of this

problem, we use a second metric that is less susceptible to this

problem. To this end, let Ii(v) denote the lowest index j with

j > i, where vi = vj or -1 if no such index exists. We define as

transition accuracy

TrAccuracy =
1

N

∣

∣

∣

{

i : Ii (a) = Ii (â)
}∣

∣

∣
, (5)

the ratio of packets for which the flow’s next packet is correctly

predicted. While swapped flows affect TrAccuracy to a lesser

extent, single packets that are assigned to the wrong flow affect

TrAccuracy more than accuracy, as they lead to two wrong

transitions.

We can also adopt methods from the evaluation of clusterings

in our setting. When clustering, we are interested in to what extent

a clustering algorithm’s outcome agrees with the ground truth,

ignoring permutations of clusters. This question is similar to

evaluating to what extent a separation into flows agrees with the

ground truth. A well-known metric for evaluating the agreement

of two clusterings is the Adjusted Rand Index (ARI) [29]. The

ARI measures the ratio of pairs of elements that are assigned

either to the same cluster in both clusterings or to different

clusters in both clusterings.

If flows that should be separated have different lengths,

accuracy and TrAccuracy are biased in the sense that random

guessing can achieve high metric readings. For ARI, adjustment

for chance is applied, ensuring that random labelings are assigned

an ARI close to zero.

C. Evaluations and Results

For evaluating our presented method, we used 90% of the

respective dataset for NN training. To craft a packet sequence for

testing separation, we randomly selected 2, 3, 4 or 5 flows in the

remaining 10%. We sequentially added each of the flows to the

sequence by uniformly randomly selecting the flow’s start time

within the existing sequence’s duration, leaving the flow’s IATs

unchanged. Reported results are obtained by averaging over 500

sequences, and, if not otherwise stated, the sequences’ results

are weighted with their packet count for averaging. We evaluate

several variants of our method:

• While the DIAT in many cases exhibits strong patterns and

is therefore a valuable information, the plain IAT between

bidirectionally transmitted packets is more noisy, depends

on the location on the transmission path where capturing is

performed and might not yield important information if client

and server operate to a large extent independently. To evaluate

whether this feature adds more noise than providing usable

information, we evaluate whether accuracy can be increased

by omitting IAT both from NN input features and from input

feature to RPs.
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Fig. 3. Performance results for our synthetically generated dataset.

• As outlined in Section IV, using features from the next

two packets for RPs might help enforcing a reasonable

sequence of packet features. However, it might also add noise

to the process if the next two packets are hard to predict.

To evaluate whether basing RPs on the next two packets

increases performance, we additionally perform evaluations

with only histograms based on the next packet.

• It is an interesting question whether multiple models can be

combined to obtain superior performance. To approach this

question, we additionally created a backward model, i.e. we

trained a model on the reversed flows. Based on both models

we then ran Algorithm 1 three times consecutively, using

a-posteriori probabilities from run r as a-priori probabilities

for run r + 1. For each of the runs we respectively used the

forward model, the backward model, and again the forward

model.

Fig. 3 shows our obtained performance results. Among all

variants we have tested, no clear differences in performance

can be observed, suggesting that all variants are able to learn

patterns in data sufficiently well, while wrong associations are

common to all studied variants. A possible explanation for this

behavior is that wrong associations arise from situations when

correct separation into flows is theoretically impossible like, e.g.,

if packets of the same size are transmitted at the exact same point

in time. Particularly for TrAccuracy, obtained performance is

surprisingly good. However, also when considering entire flows,

performance exceeds random labeling substantially, as shown by

ARI and accuracy. ARI shows to be a good proxy for accuracy,

allowing the use of ARI for a less computationally demanding

evaluation if a high number of interleaved flows is used.

As expected, performance plummets when increasing inter-

leaved flow count. Interestingly, TrAccuracy results are con-

sistently markedly better than accuracy. TrAccuracy plummets

only slightly with the number of interleaved flows. As remarked

above, such behavior might hint at flows being swapped in the

middle of a flow but being otherwise correctly predicted. Hence,

according to Fig. 3, a useful extension might be to increase long-

term dependencies either with respect to input features of the NN

or of the predicted packet features. In some practical situations,

however, such behavior seems unpreventable if the flows are of

an equal type and, hence, show identical patterns.

The number of retained configurations after each time step,

R, is a parameter that severely affects runtime of Algorithm 1.

To provide guidance on how R has to be selected, we tracked
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Fig. 4. Maximum rank of the ground truth solution in the Pa-sorted A.

the ground truth solution’s rank in the Pa-sorted A, i.e. we

determined ρ(i) = 1 + |{ã ∈ A : Pã < Pa}|, after processing

each packet i throughout the execution of Algorithm 1. After

processing of the entire sequence we determined the maximum

encountered rank ρ̄ = maxi=1,...,n ρ
(i). As soon as ρ(i) exceeds

the Rth position, the ground truth solution is pruned from A in

line 10 of Algorithm 1 and can thus no longer be output as â,

establishing the relevance of this value.

In Fig. 4, we show the prevalence of high values of ρ̄ among all

test sequences we have evaluated. Also in this case, we observed

no clear differences among tested variants. The figure shows a

severe dependence of ρ̄ with the number of interleaved flows,

prompting the use of similarly high values of R to achieve

good performance. Due to the exponential increase of possible

combinations with the number of interleaved flows, this behavior

is to a certain extent expected. Fig. 4 shows that for many

sequences flows can already be separated with a relatively small

R even when separating 5 interleaved flows. On the other hand,

the figure hints at an exponential increase ofR with the number of

interleaved flows. An exponential increase of R makes separation

prohibitive when too many flows need to be separated.

Aiming to provide more insight into which patterns and

characteristics govern the obtained accuracy and investigate

whether observed performance meets expectations, as a next step

we selected flows created as steady UDP stream as described

in Section V-A for closer analysis. In Fig. 5, we show the

distributions of per-sequence accuracies when separating 2, 3

or 4 steady flows, when all interleaved flows have equal packet

sizes. Hence, while the majority of sequences achieves perfect
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Fig. 5. Distribution of per-flow accuracies (left) and transition accuracies (right)
when separating 2 flows (top), 3 flows (center) and 4 flows (bottom) with equal
packet sizes.

TABLE I
PERFORMANCE RESULTS FOR REAL-WORLD DATA.

Pkt. averaging Seq. averaging

Flows Acc. TrAcc. ARI Acc. TrAcc. ARI

M
A

W
I

2 0.983 0.977 0.945 0.990 0.986 0.966
3 0.957 0.950 0.910 0.970 0.968 0.934
4 0.945 0.938 0.897 0.957 0.954 0.916
5 0.932 0.926 0.884 0.945 0.944 0.902

C
IC

-I
D

S
-

2
0
1
7

2 0.996 0.996 0.987 0.997 0.997 0.990
3 0.993 0.992 0.981 0.994 0.993 0.983
4 0.987 0.987 0.971 0.989 0.989 0.976
5 0.981 0.984 0.963 0.984 0.985 0.969

U
N

S
W

-
N

B
1
5

2 0.998 0.998 0.993 0.998 0.998 0.994
3 0.996 0.994 0.988 0.996 0.994 0.988
4 0.995 0.994 0.987 0.994 0.993 0.986
5 0.991 0.989 0.979 0.991 0.990 0.980

separation accuracy, the obtained total accuracy is impacted by

just a few sequences, for which accuracy drops substantially.

When separating steady flows with distinct packet sizes, we

obtain perfect accuracy of 100% in all cases with 2, 3 and 4

interleaved flows. Fig. 6 depicts obtained performance when

separating two interleaved steady flows with equal packet sizes

in more detail. In Fig. 6, we show the time offset between the

transmission of two packets of the two different flows on the

abscissa. Hence, perfect separation performance can be achieved

if either the two involved flows use different packet sizes or if the

time offset is sufficiently high. Different packet sizes in the two

respective flows allow a simple separation by packet size. Thus,

good performance in these cases is expected. On the other hand,

for equally sized packets separation is theoretically only possible

if the time offset between both flows is high enough to obtain

significant differences in the expected arrival time of the next

packet. Behavior observed in Fig. 6 thus meets our expectations,

since with our simulated network IATs of received packets have

a mean of 50ms and standard deviation of 2
√
2ms.

Table I depicts our performance results obtained for our

real-world datasets. Unlike the synthetic dataset, flows in this

case are not of constant length. For this reason, we perform in

Table I averaging based on both packets and sequences. Hence,

accuracies observed for long sequences have a stronger effect

on packet-averaged results than on sequence-averaged results.

Performances reported in Table I are on the same level as

performance observed for synthetic datasets and in some cases

even slightly better. We conclude that flows contained in our

real-world datasets contain enough structure and patterns for

successful separation. It is also interesting that in contrast to

our synthetic data, transition accuracies are slightly lower than

accuracies. This behavior might hint at misassociations of single

packets being a more prevalent problem than swapped flows for
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Fig. 6. Obtained performance when separating steady synthetic flows with
different time offsets.



these datasets. Our real-world datasets contain substantially more

flows of short length than the synthetic dataset, which further

supports this assumption.

VI. DEFENSES

Our experimental evaluation shows that with an increasing

number of flows both computational requirements increase

substantially and achieved accuracy drops. For this reason,

encrypted traffic from multiple applications from one individual

user is more susceptible for allowing to be analyzed than site-

to-site VPN traffic combining a multitude of flows. For the

secure design of network protocols, it is hence beneficial to avoid

leaking a packet’s source and receiver in unencrypted data, which,

e.g., is contrary to addressing in current 802.11 wireless networks.

Packet aggregation and packet fragmentation can also prevent

flow separation as outlined in this paper under the condition that

it is no longer possible to deduce packet lengths of unencrypted

packets. IP-TFS [30] is a proposed extension of IPsec that allows

fragmentation and aggregation and obscures observable traffic

patterns at the expense of consumed bandwidth.

In general, such defense mechanisms can harm network

performance by introducing additional latency or occupying

more link capacity than necessary. However, if resources are

not severely limited, we recommend adopting such strategies by

default to enhance protocol security and privacy.

VII. CONCLUSIONS

Tunnel encryption techniques are a prevalent technique for

protecting data transmission on the Internet. In this paper, we

showed that their security and privacy properties are not as strong

as they are frequently believed to be. We have designed a NN,

which is able to pinpoint anomalous packets in a flow. Based

on this anomaly detector, we have then devised an algorithm

that is able to separate observed encrypted traffic into their

original flows without requiring the ability to decrypt packets.

Our experimental evaluation encompasses both synthetic data

with well-known patterns, and publicly available real-world

network traces, showing that high separation performance can

be obtained in both cases. In particular in cases where individual

flows show distinct patterns that are different from each other,

separation of encrypted traffic works remarkably well.

Encryption techniques as highlighted and discussed in this

paper form an important pillar of the protection of modern

communication networks. However, as we have shown, more

information can be recovered from interleaved encrypted flows

than commonly believed, which can form an entry point for in-

depth traffic analysis and deanonymization attacks. It is advisable

to harden the security and privacy of used encryption techniques

using defenses we have reviewed in this paper.
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