
A Subliminal Channel in EdDSA
Information Leakage with High-Speed Signatures

Alexander Hartl

TU Wien

Institute of Telecommunications

Gusshausstrasse 25/E389

Vienna 1040, Austria

alexander.hartl@student.tuwien.ac.at

Robert Annessi
∗

TU Wien

Institute of Telecommunications

Gusshausstrasse 25/E389

Vienna 1040, Austria

robert.annessi@nt.tuwien.ac.at

Tanja Zseby

TU Wien

Institute of Telecommunications

Gusshausstrasse 25/E389

Vienna 1040, Austria

tanja.zseby@tuwien.ac.at

ABSTRACT
Subliminal channels in digital signatures provide a very effective

method to clandestinely leak information from inside a system to a

third party outside. Information can be hidden in signature parame-

ters in a way that both network operators and legitimate receivers

would not notice any suspicious traces. Subliminal channels have

previously been discovered in other signatures, such as ElGamal

and ECDSA. Those signatures are usually just sparsely exchanged

in network protocols, e.g. during authentication, and their usabi-

lity for leaking information is therefore limited. With the advent

of high-speed signatures such as EdDSA, however, scenarios be-

come feasible where numerous packets with individual signatures

are transferred between communicating parties. This significantly

increases the bandwidth for transmitting subliminal information.

Examples are broadcast clock synchronization or signed sensor

data export. A subliminal channel in signatures appended to nume-

rous packets allows the transmission of a high amount of hidden

information, suitable for large scale data exfiltration or even the

operation of command and control structures.

In this paper, we show the existence of a broadband subliminal

channel in the EdDSA signature scheme. We then discuss the impli-

cations of the subliminal channel in practice using three different

scenarios: broadcast clock synchronization, signed sensor data ex-

port, and classic TLS. We perform several experiments to show the

use of the subliminal channel and measure the actual bandwidth

of the subliminal information that can be leaked. We then discuss

the applicability of different countermeasures against subliminal

channels from other signature schemes to EdDSA but conclude that

none of the existing solutions can sufficiently protect against data

exfiltration in network protocols secured by EdDSA.

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MIST’17, , October 30, 2017, Dallas, TX, USA.
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN ISBN 978-1-4503-5177-5/17/10. . . $15.00

https://doi.org/10.1145/3139923.3139925

1 INTRODUCTION
Subliminal channels are a variant of covert channels that hide infor-

mation by exploiting certain mathematical properties of cryptosys-

tems. Subliminal channels can, therefore, be used to clandestinely

leak information by using common cryptographic protocols. A ty-

pical use of subliminal channels in digital signatures are scenarios

where encryption is not permitted or are just unusual but the use

of signatures is allowed to ensure non-repudiation and integrity

of messages. Examples are the classical prison scenario, where a

warden monitors all communication between prisoners and typical

censorship scenarios.

There exist many use cases in which integrity is of higher con-

cern than confidentiality and therefore signatures are desirable but,

at the same time, data may be sent unencrypted due to resource

constraints or simply because the time needed for encryption is

detrimental to the applications’ requirements; examples are typical

group communication scenarios such as (broadcast or multicast)

clock synchronization or sensor data collection. Subliminal chan-

nels can be used in such scenarios to hide malicious data for in-

formation leakage or malware communication in an existing overt

communication. In this way, subliminal channels can cause sig-

nificant damages to companies or whole nations, if confidential

information is leaked to the outside.

In contrast to other information hiding techniques such as obfus-

cation and steganography the sender of the subliminal information

does not have to alter the contents of overt messages. Subliminal

channels can thus also be used in scenarios where the signer has

limited or no influence to the transmitted message or modifying

contents would raise suspicion.

In classical security protocols, such as IPsec or Transport Layer

Security (TLS), digital signatures are usually only used sparsely,

mainly in the authentication phase, which bounds the bandwidth

for data leakage to a few bytes per connection. A subliminal channel

in a signature scheme in a security protocol may still be sufficient

to leak critical information such as keying material or status in-

formation despite limited bandwidth. The advent of high-speed

signatures such as EdDSA [1] does change this bandwidth limita-

tion though. EdDSA was primarily designed for small signature size

as well as high-performance, i.e., fast signing and verification. With

these properties it can be used in scenarios where many subsequent

packets need to be signed, like clock synchronization information

or sensor data collection. This results in a significant increase in

the bandwidth usable for subliminal information.

In this paper, we show the existence of a subliminal channel

in EdDSA and describe how the channel can be used in different

https://doi.org/10.1145/3139923.3139925

scenarios. We analyze the bandwidth that can be achieved and eva-

luate potential countermeasures. We distinguish two cases: (1) the

legitimate sender wants to transmit subliminal information intenti-

onally, and (2) the legitimate sender has been compromised and the

subliminal message is inserted by malware, which wants to remain

undetected and has access to the signing process. Then, we elabo-

rate in which network protocols EdDSA is in use or may be used in

the near future in order to assess in which way subliminal channels

may be employed. We furthermore identify how much (subliminal)

information can be clandestinely transferred via these network

protocols by exploiting the subliminal channel in EdDSA. Finally,

we evaluate potential countermeasures that prevent, mitigate, or at

least detect the use of subliminal channels.

Our main findings are:

(1) A broadband subliminal channel in EdDSA does exist and

can be exploited by sharing the signing key with the recei-

ver of the subliminal information. Such prior key sharing

is a common requirement in many subliminal channels

and can be conducted by sharing the key a priori through

external communication, using a narrowband subliminal

channel, or by compromising the sender.

(2) A narrowband subliminal channel in EdDSA can be esta-

blished, which does not require knowledge of the signing

key by the subliminal receiver. The narrowband channel

can be used to send the required signing key to the sublimi-

nal receiver in order to establish the broadband subliminal

channel.

(3) The maximum bandwidth of the broadband subliminal

channel is 252 bit per signature, which is substantial given

the fact that EdDSA’s signature size is only 512 bit.

(4) Our analysis shows the applicability of the subliminal chan-

nel in practical experiments for very different scenarios,

such as broadcast clock synchronization, signed sensor

data collection, and the TLS handshake. The maximum

achievable bandwidth is investigated in practical experi-

ments.

(5) We identify three countermeasures that ensure subliminal-

freeness: (1) an extension based on pre-published nonce

points, (2) a scheme based on active warden interaction,

(3) the use of zero-knowledge proofs. Additionally, we des-

cribe a method to detect subliminal channels based on

checking whether signatures of two identical messages

are themselves identical. Our analysis shows that none of

the countermeasures is generally viable in the context of

network protocols so that protecting information assets

from leakage remains amajor challenge. Also, the detection

methods may be circumvented by a skilled adversary.

We conclude that when employing EdDSA in network security

protocols, network operators, security engineers, as well as protocol

designers should be aware of the existence of the subliminal chan-

nels described in this paper. If the possibility of having a subliminal

channel cannot be tolerated in a particular application area, either

a different, subliminal-free signature scheme (with potentially less

attractive properties than EdDSA) should be employed instead or

significant resources are required to ensure that a subliminal chan-

nel is not actively exploited.

2 RELATEDWORK
The concept of subliminal channels was first introduced in 1984 by

Simmons [2]. Simmons imagined two prisoners who are allowed to

communicate with each other in terms of messages. As the prison

warden aims to prevent the prisoners from coordinating an escape

plan, he only passes on messages that are unencrypted so that he

can read them. On the other hand, the prisoners fear of the warden

forging messages from the respective other such that they insist on

the communication being authenticated using signatures. With this

setting in mind, Simmons shows that information can be embedded

in the signature such that it does not hamper successful verification

of the signature.

Simmons showed how to construct narrowband channels that

allow transmitting only a few bit as well as broadband channels

that allow a significant amount of subliminal information to be

added to a signature [3]. These broadband channels often require

the receiver of the hidden information to know the signer’s secret

key in order to recover the subliminal information. A noteworthy

exception is the Newton channel, which was shown by Anderson

et al. for the ElGamal signature scheme specifically [4]. Here, the

signer unveils as many bits of information of the secret key to

the subliminal receiver as should be available for the subliminal

channel afterwards. So far, subliminal channels have been shown

to exist in many traditional signature schemes such as DSA [3, 5],

ECDSA [6, 7, 8] or RSA [9, 10, 11], and finding a mode of operation

that is provably subliminal-free often turns out to be a difficult task.

In this paper we focus on the possibilities to transmit subliminal

information in the emerging EdDSA signature scheme. As EdDSA

experiences increasing deployment, we show how a broadband

subliminal channel can be created and discuss scenarios in which

these channels are used to leak information. Finally, we discuss

approaches that prevent the randomness, which is essential to

the signature scheme, from being (mis)used. Since all potential

countermeasures come at a cost and none of them is generally

applicable, our evaluation also provides valuable information for

protocol designers in how to cope with the subliminal channel.

3 THE EDDSA SIGNATURE SCHEME
EdDSA [1] was introduced in 2011 by Bernstein et al. as a well

performing alternative to today’s signature schemes in terms of

speed and security. It uses point addition on the twisted Edwards

curve

E =
{
(x ,y) ∈ Fp × Fp : −x2 + y2 = 1 + dx2y2

}
, (1)

where Fp denotes the Galois field of orderp. The scheme has several

parameters: the prime p, the parameter d defining the curve, a base

point B ∈ E, the order of B denoted as L, and a cofactor 2
c
with

integer c such that 2
cL = |E | (the number of points on the curve).

Furthermore, a hash function H is used that produces 2b bit output,

where b ∈ N determines the security level provided. For Ed25519,

which is EdDSA used together with the curve Curve25519 from

[12], these parameters are standardized in [13]. The RFC defines

a further scheme, Ed448, which uses an untwisted Edwards curve

[14] and provides 224-bit security rather than 128-bit.

The secret key k should have an entropy of at least b bit. It is

mapped to a 2b-bit string h = H (k). Bits hc to hn−1 with c ≤ n < b

Subliminal
message r

Overt
message M

Sender

Subliminal
Receiver

Receiver

Secret key (k or a)

Public key (A)

Figure 1: A subliminal channel in EdDSA.

ofh are in turn injectively mapped to a number a. Knowledge of a is
sufficient for producing valid signatures, which justifies considering

a as the signing key. The public key consists of a point on the curve

A = aB.
To generate a signature for a messageM , first a nonce value

r = H (hb , . . . ,h2b−1,M) (2)

has to be derived. The signature consists of two parts: (1) a pointR =
rB and (2) a number S = (r +H (R,A,M)a) mod L. For verification
the receiver has to check the group equation

2
cSB = 2

cR + 2cH (R,A,M)A. (3)

EdDSA is based on a digital signature scheme that was first des-

cribed by Schnorr [15]. A main concern when using this kind of

signatures is that r has to be chosen unpredictably [1]. Indeed, if r
can be guessed correctly for an existing signature, then the signing

key a can be simply computed as a = (S − r)/H (R,A,M) mod L
using the extended Euclidean algorithm [1]. Furthermore, if the

same nonce value has been used for generating signatures of diffe-

rent messagesM1 andM2, the signing key a can be found as well

as a = (S1 − S2)/(H (R,A,M1) − H (R,A,M2)) mod L. Both issues

can be addressed by deriving r from the message and the secret

key as done for EdDSA (see Eq. (2)). This is in contrast to ECDSA,

where the issue of choosing an appropriate value for r is left to

the implementation, which has to use a pseudorandom number

generator for this purpose.

4 SUBLIMINAL CHANNELS IN EDDSA
In [3] Simmons introduced a classification of subliminal channels

according to the bandwidth of subliminal information. Thus, in the

case of a broadband subliminal channel the information can use

almost all the signature’s bits that are not needed for its security

against forgery. In the case of a narrowband subliminal channel the

subliminal bandwidth is significantly smaller and often as small as

just a few bits. EdDSA yields a broadband subliminal channel as

well as a narrowband channel.

4.1 The Broadband Channel
Like in other signature schemes that are based on the discrete

logarithm problem the (random) nonce r can be calculated with

little effort from a valid signature if the signing key a is known as

r = S − H (R,A,M)a mod L (4)

It is noteworthy that the calculation rule for r in Eq. (2) only ser-

ves as a high-quality random number generator for the signature

scheme. Using a different value for the nonce does not harm the

successful verifiability of the produced signature in any way. Hence,

the value of r can be used as a subliminal channel by encoding co-

vert data into it on the sender side. This data can then be recovered

using Eq. (4) by anyone who holds the signing key a and is able

to intercept the message and its signature (see Fig. 1). Since in-

formation can only be encoded in the residue class modulo L, the
subliminal channel has a theoretical bandwidth of log

2
L bits per

signature. For Ed25519 this corresponds to a bandwidth of 252 bit

per signature. For Ed448 this corresponds to a bandwidth of 447 bit

per signature.

The general usage of establishing a subliminal channel is de-

picted in Fig. 1. The sender cooperates with a subliminal receiver,

who can be co-located with the receiver or reside somewhere on

the network path. It is required that the receiver of the subliminal

information also knows the signing key a. For this, we distinguish
two cases: (1) the legitimate sender wants to transmit subliminal

information intentionally and (2) the legitimate sender has been

compromised and the subliminal message is inserted by malware

that has access to the signing process.

For case (1), the sender directly shares the signing key with the

subliminal receiver before the subliminal communication starts. By

knowing the signing key, the subliminal receiver would be also

capable of forging arbitrary signatures on behalf of the sender.

Nevertheless, for subliminal communication scenarios we assume

that the sender of the subliminal information and the subliminal

receiver collaborate and that it is therefore reasonable to assume

that they share the secret key k (to derive the signing key) or

the signing key a upfront. For case (2), the adversary needs to

clandestinely leak the signing key to the receiver. For the attack

scenarios described in Section 5 the key could be leaked by using

the narrowband channel described below.

Note that if data is processed with the encrypt-then-sign method

the message M is the ciphertext and not the plaintext, which makes

the subliminal channel usable even if the original plaintext message

is encrypted and therefore unknown to the subliminal receiver (see

Section 5).

4.2 A Narrowband Channel
Besides the broadband subliminal channel described above, it is also

possible to use the signature as a narrowband subliminal channel.

In this case the sender tries to make the encoded representation of

the nonce point R show a specific bit pattern like, for example, the

last byte being equal to the intended subliminal information. Since

computing logarithms in finite fields is infeasible, he is not able to

directly choose R appropriately. However, trying many randomly

picked values for r , the sender is eventually able to find a value,

for which R has the desired properties. If he uses this approach the

sender has to test 2
Bs

values for r on average, where Bs denotes
the desired bandwidth of the subliminal channel in bits. Due to

the exponential growth with bandwidth, it is not possible to use a

significant portion of the signature’s bits for the subliminal informa-

tion, which explains the classification as narrowband channel. This

subliminal channel represents a very general approach, that can be

used for many signature schemes, that either explicitly consume

randomness for signature generation or implicitly allow many va-

lid signatures for the same message. The major advantage for the

attacker compared to the broadband channel described above, is

that the subliminal receiver does not need to know the signing key

a.

5 ATTACK SCENARIOS
In general, digital signature schemes are used in a multitude of

different scenarios, which range from signing documents or emails

to the use of signatures for providing authentication of communi-

cation partners in complex security protocols. Due to its excellent

properties regarding performance and security, EdDSA has been

proposed for a wide variety of applications, protocols, and use cases

in the past
1
.

In addition to these existing use cases, EdDSA was proposed

in scenarios where a sender transmits many packets and needs to

ensure integrity and data origin authentication to the receiver(s) [16,

17, 18]. EdDSA is an excellent choice for such scenarios as it is

fast and lightweight enough to be applicable to scenarios with

high sending rates and limited resources, such as broadcast clock

synchronization and sensor data collection in the smart grid.

The subliminal receiver needs knowledge of the signature and

the signed message to recover the subliminal information in r .
If data is sent unencrypted, like in the classical prison scenario

mentioned in Section 2, the exploitation of the subliminal channel

is easy because any eavesdropper has access to the message. The

subliminal channel is also usable if data is encrypted with the

encrypt-then-sign method, which in our considered scenarios is

the preferred method, for example using a scheme as described in

[19]. The data is first encrypted and the ciphertext is signed. In this

case the ciphertext is the message input to the signature algorithm

and the subliminal receiver only needs the ciphertext (and not the

plaintext message) and the signature to recover r . Both are visible

to an eavesdropper in the network. Nevertheless, one case where

encryption causes difficulties is if the message is signed and then

encryped. In this case the subliminal receiver on the path needs to

know the decryption keys as well to recover r . An example is the

encrypted exchange of signatures in TLS 1.3 (see Section 5.3).

For this paper we selected three different use cases. In two use

cases the authenticity of the data is of higher concern than its con-

fidentiality so that data may be sent unencrypted (or would use the

encypt-then-sign method). These use cases directly correspond to

the classical prison scenario in the original work by Simmons 1984.

In addition, we show a third use case, the use of subliminal channels

in TLS where in some cases the signature is part of the encrypted

information.

As exemplary use cases we investigate the following scenarios:

1
For projects that employ EdDSA see https://ianix.com/pub/ed25519-deployment.html.

• Broadcast clock synchronization: Clock synchronization

protocols, such as the Network Time Protocol (NTP) and

the Precision Time Protocol (PTP) can use high-speed sig-

natures for signing messages to provide data origin au-

thentication. Time synchronization protocols require data

origin authentication to ensure that the time information

comes from a trusted server and has not been modified

on the path. Confidentiality of time information is of less

concern, so data may be sent unencrypted. Time synchro-

nization protocols are used in many environments and

therefore provide a broad infrastructure for transmitting

subliminal information. We propose to use high-speed sig-

natures in such scenarios [16] and as an example show the

use of EdDSA in NTP broadcast mode.

• Smart grid sensor data collection: High-speed signatures

can be used to protect data sent from sensors to data collec-

tors in smart grid monitoring. Depending on the amount of

sensor data, many signatures need to be sent in short time

intervals. Again, data origin authentication is of higher

concern than confidentiality since modified sensor data

may lead to wrong control decisions. Also for such sce-

narios we propose the use of high-speed signatures. As

an example, we show the use of EdDSA for transmitting

phasor measurement data in a smart grid environment,

transmitting 60 to 120 packets per second and therefore

providing a high bandwidth for subliminal information.

• Network security protocols, such as IPsec and TLS use

signatures to provide authenticity of the communicating

partners. Usually only few signatures are exchanged. But

even those infrequent transmissions can be used to leak

critical information such as keying material. As example,

we show the use of EdDSA in TLS 1.2 and prior versions

[20, 21] and TLS 1.3 [22].

In the following we show and implement attack scenarios using

the subliminal channel for the above use cases.

5.1 Broadcast Clock Synchronization
A scenario where the need for signing numerous messages arises

naturally is broadcasting time information using clock synchroniza-

tion protocols such as NTP and PTP. An authentication scheme for

this purpose has to satisfy various requirements tominimize the pro-

bability of an attacker compromising the system times of network

members and thereby also compromising the proper functioning

of security protocols that rely on accurate time information [16].

EdDSA seems particularly well-suited for this purpose as it pro-

vides adequate performance in terms of signing and verification

speed and achieves good security properties. However, the possi-

bility of embedding subliminal information in the signatures has

to be taken into account in security-sensitive environments. A sig-

nature scheme is an attractive candidate for carrying subliminal

information because it may yield a large bandwidth, due to the large

number of packets. Furthermore, clock synchronization protocols

are widely deployed throughout the Internet, leading to a broad

infrastructure usable for leaking information through subliminal

channels. Additionally, when time synchronization messages are

broadcast over the network, the need for the subliminal receiver to

https://ianix.com/pub/ed25519-deployment.html

Botnet C&C

NTP

broadcasts

Subliminal communication
Overt communication

PDC
PMUs

Sensible
information

Figure 2: Attack scenarios for the subliminal channel in EdDSA: Botnet Command and Control using NTP broadcasts (left)
and information leakage for phasor measurements (right).

take special measures for eavesdropping on the signed packets is

eliminated as any network access suffices.

Exemplary use cases for such a subliminal channel are the clan-

destine leakage of information through a company’s network or

the operation of a botnet where the signature of the NTP packets

are exploited to transmit command and control messages to bots

implemented in NTP clients. Even if the interval of time broadcasts

is large the bandwidth may suffice for these purposes.

5.2 Smart Grid Sensor Data
There are several reasons why components that operate in smart

grids and other cyber-physical system environments are deemed

highly security critical. Availability, integrity, and data origin au-

thentication are essential for sensor data collection in smart grids.

Confidentiality is usually of less concern and encryption often omit-

ted due to time and resource constraints. In such a security-critical

setting a signature scheme is of fundamental importance.

Since some applications have real-time requirements and some

devices are built on low-power hardware, lightweight signature

schemeswith fast signature generation and verification are required.

For these reasons, we propose that high-speed signatures, such as

EdDSA, should be used as signing method for transmitting sensor

data in future deployments. Nevertheless, when deploying such

signatures the existence of subliminal channels needs to be taken

into account.

An example of a possible subliminal channel in a smart grid

scenario appears in the course of transmission of data measured

by Phasor Measurement Units (PMUs). Here, the need for a fast

signature scheme arises from the fact that 60 to 120 measurement

values per second are transmitted to data concentrators and may

need to be processed in real-time (such as in control applications

for example). Being able to place information in the signatures of

this large number of signed packets implies a large bandwidth of su-

bliminal information. Exploiting this possibility, a substation could

for instance embed subliminal information into signatures in order

to exfiltrate critical information such as its location, configuration

parameters, maintenance schedules, or even key material. In this

case, subliminal data transmission is restricted to the network of

sensors and data collectors. However, since sensor deployment in

smart grids and other environments is growing continuously, the

infrastructure usable for subliminal channels grows as well.

5.3 Network Security Protocols
TLS is the prevalent protocol for securing communications on to-

day’s Internet. It is widely deployed and therefore an attractive

carrier for information leakage and other communication hiding

use cases. Hence, it seems remarkable that only a small amount

of research has been conducted into exploring ways to covertly

transmit information using the TLS protocol so far.

Some work has been done to identify covert channels in TLS,

which use protocol fields in the header or packet timing to ex-

change covert information. Most publications propose to use the

randomness field that both client and server transmit in their Hello
messages [23, 24, 25, 26, 27]. Other options are to use the session id

field [23], encryption padding [23], timestamp values in the Hello
messages [23], the certificates [25] or the exchanged cipher suites

lists [23, 25]. Subliminal channels, on the other hand, hide informa-

tion in the cryptographic protocol. Compared to covert channels,

significantly fewer subliminal channels have been identified.

When hiding information in TLS, it is relevant at which stage of

the connection establishment the subliminal information is injected,

because parts of the TLS connection establishment are already

encrypted. This includes the signature exchange in TLS 1.3 (Fig. 3 on

the following page). In such cases, the subliminal receiver does not

only need the signing key to recover the subliminal information but

also requires the shared secret key of the communication partners

in order to decrypt the ciphertext that contains the signature.

5.3.1 RSA ciphertext. Gołȩbiewski, Kutyłowski, and Zagórski

[26] describe a method for exploiting the TLS premaster secret as a

hidden information channel if RSA is used for the key exchange. If

RSA is used, the premaster secret is chosen by the client, encrypted

under the server’s public key and sent to the server in the Client
Key Exchange message. As neither subliminal sender nor subliminal

receiver hold the server’s secret key, the value cannot be used as a

broadband channel: The subliminal receiver is not able to decrypt

the ciphertext. Thus, the subliminal information must be contained

in the ciphertext instead of the premaster secret itself. On the other

hand, lacking the server’s secret key also the subliminal sender is

not able to choose the premaster secret in a way that makes the

ciphertext equal to the intended subliminal information. Hence,

similarly to the narrowband subliminal channel from section 4.2 he

has to repeatedly try different values for the premaster secret until

he finds a value that makes the encrypted value show a pattern

that corresponds to the subliminal information.

5.3.2 Diffie-Hellman parameters. One possibility similar to the

RSA approach described by Gołȩbiewski, Kutyłowski, and Zagórski

[26] is to use the exchange of parameters in the Diffie-Hellman key

exchange. Using Diffie-Hellman is one option for key negotiation

and in the course of this process signatures are used for authentica-

tion purposes. A narrowband subliminal channel can be established

in a manner similar to that described in Section 4.2: Trying different

values for α , a value of дα can be found that shows the desired bit

pattern.

However, we are not aware of any possibility for using this

method as a broadband subliminal channel, as it is not feasible to

directly encode subliminal information in the transmitted value дα .
The discrete logarithm α has to be known by the sender in order

to calculate the joint secret key. If the sender wants to transmit

information directly inдα he would need to find an α that generates

the subliminal message дα . Thus, since computing the discrete

logarithm is infeasible, these points дα cannot be chosen equal to

the intended subliminal information.

5.3.3 Signatures. In contrast to the two subliminal channels

described above, digital signatures can provide the opportunity

to establish broadband subliminal channels in TLS. During the

handshake signatures are used to prove the identity of the server

and, optionally, of the client. Signatures furthermore ensure the

integrity of the Diffie-Hellman key exchange and are an essential

building block for the certificate chain used to verify the server’s

identity based on a set of certificate authorities.

If ephemeral Diffie-Hellman is used for key exchange, the au-

thenticity of the server is verified using a signature. Fig. 3 shows

the messages that are exchanged during a handshake. In protocol

versions prior to TLS 1.3, the signature is sent together with the

server’s Diffie-Hellman parameters in the Server Key Exchange mes-

sage. Besides these parameters the signed data only contains the

random values from the client’s and the server’s Hello messages.

At that point the data exchange is unencrypted and the signed

message (which is needed to recover subliminal information in the

signature) is therefore known by anyone eavesdropping on the con-

nection. Furthermore, as described in Section 7.2, the inclusion of

these random messages hampers detection of the subliminal chan-

nel because signatures for the same signed data will hardly ever

occur. The client can also be authenticated using a certificate. In this

case the corresponding signature is transmitted in the Certificate
Verify message and is computed over all handshake messages up

to the current point. When using client authentication, subliminal

channels exist in both directions, otherwise only the subliminal

channel from the server to the client can be exploited.

In contrast to earlier TLS versions, the use of ephemeral Diffie-

Hellman is enforced in the upcoming version TLS 1.3 with the

associated parameters being exchanged already in the client’s and

the server’s Hello messages. The signatures used for authentication

are exchanged in the Certificate Verify messages. The signed data

now contains the entire handshake up to the respective Certificate
Verify message for both server and client. The most important dif-

ference in TLS 1.3 compared to earlier versions is the fact that the

handshake data is now encrypted as soon as the shared secret from

Client Hello

Server Hello

Certificate

Server Key Exchange

Certificate Request

Server Hello Done

Client Certificate

Client Key Exchange

Certificate Verify

Change Cipher Spec

Finished

Change Cipher Spec

Finished

Client Hello

Server Hello

Encrypted Extensions

Certificate Request

Certificate

Certificate Verify

Finished

Certificate

Certificate Verify

Finished

Encrypted messages

Optional client authentication

TLS version ≤ 1.2 TLS version 1.3

Figure 3: The TLS handshake.

the key exchange algorithm is available. Therefore, all messages

following the Server Hello are unavailable to a passive eavesdrop-

per who does not know the encryption key. For this reason, an

eavesdropper cannot see the signed message and therefore cannot

recover the subliminal information in r . So in order to use this as

subliminal channel the subliminal receiver additional needs the

encryption key.

Finally, the signatures used for building the certificate chain can

equally be used to carry hidden data in the course of the TLS hands-

hake if the subliminal sender is the issuer of one of the certificates

contained in the certificate chain. But this approach may be easy

to detect in comparison to above mentioned signatures.

Table 1 on the next page provides references for subliminal chan-

nels discovered that may be used in TLS. Current TLS versions

support either DSA or ECDSA when using the Diffie-Hellman key

exchange. EdDSA is one of the new signature scheme options avai-

lable in TLS 1.3 [22] and is proposed to be used with version 1.2

and earlier TLS versions in [20]. Therefore, it is likely that EdDSA

is implemented in current and future implementations of TLS and

the subliminal channel in EdDSA can be utilized to transmit hidden

information.

5.4 Further Attack Scenarios
In addition to the attack scenarios already investigated in this

section, further scenarios for the use of the subliminal channel

in EdDSA are likely and should be taken into account when ap-

plying EdDSA.

Subliminal channels can be used to encode additional informa-

tion in digital signatures in passports [6] or health insurance cards.

The issuer could include subliminal information that provides additi-

onal information without the owner’s knowledge. Also, DNSCrypt
2

uses Ed25519 and DNSSEC [28] supports it, which is why these

protocols are susceptible to subliminal channels. Furthermore, up-

coming efforts to secure Internet Inter-AS routing in the Border

2
https://dnscrypt.org/

https://dnscrypt.org/

Table 1: Subliminal channels in TLS.

Exploited scheme Protocol
version

Bandwidth Difficulty of
detection1

References

Key exchange using RSA ≤ TLS 1.2 narrow/broad
3

hard [26]

Diffie-Hellman key exchange all narrow hard

DSA ≤ TLS 1.2 narrow/broad
3

hard [3]

ECDSA all
2

narrow/broad
3

hard [6]

EdDSA all
2

narrow/broad
3

hard this paper

1
Difficulty of detection assumes subliminal information that is indistinguishable from uniformly random data.

2
For TLS 1.3 only if the shared secret for encryption can be leaked to the receiver of the covert data.

3
Depending on the receiver of the covert data possessing the corresponding secret key.

Gateway Protocol (BGP) use nested signatures for path validation.

In these signatures, subliminal information could be transmitted

between BGP routers. Also, many cryptocurrencies employ EdDSA

for signing transactions, which might be exploited to add sublimi-

nal information. These are just a few examples for the applicability

of the subliminal channel in EdDSA.

6 MEASUREMENT RESULTS
We performed experiments for the three attack scenarios described

in the previous section in order to show the possibility to transmit

subliminal information within the EdDSA signature in practice

and to measure the actual achievable bandwidth in the different

scenarios. In this section we present both the experimental setup

and the measurement results.

6.1 Clock Synchronization: Signed NTP

NTP Server NTP Client

Signer bridge Verifier bridge

Covertly transmitted
document

Figure 4: Experimental setup for investigating a subliminal
channel in signed broadcast NTP messages.

The following experimental setup was used (Fig. 4): the NTP

server and client run unmodified NTP software while the signature

generation is being performed by the network bridges, which are

located between the NTP server and the NTP client. The sublimi-

nal information is therefore embedded by the ’signer bridge’. The

subliminal receiver can thus be anywhere on the broadcast domain.

In our case, the receiving part is performed by the ’verifier bridge’.

Hence, unlike the normal signing situation, here the verifier also

has to hold the signing key that was used to generate the signature.

As described in Section 4, the sharing of the signer’s key is required

often for using broadband subliminal channels in signatures.

For the setup we employed machines running Debian Linux

’Jessie’ as operating system and used iptables in conjunction with

nfqueue on the bridge devices to sign packets and remove signatu-

res, respectively. We used the cryptographic primitives from the

NaCl
3
library to perform the tasks of signature generation and

verification. In order to implement the retrieval of the subliminal

information according to Eq. 4 on page 3, we added a function for

performing subtractions in the appropriate finite field. Apart from

this modification, the nonce value was substituted in the signing

process to include the subliminal information and was recovered

from the signature. In this way, the subliminal channel was proven

operational.

In such practical setting, it is more difficult to handle partial

bytes. For this reason, we transmitted 248 bit or 31 B of sublimi-

nal information per message, instead of the theoretically possible

252 bit. Due to the broadcast interval of 8 seconds, a bandwidth

of approximately 3.9 B/s was achieved. 8 seconds is the smallest

broadcast interval possible in NTP and, hence, 3.9 B/s is the largest

achievable bandwidth that is possible without modifying NTP’s

source code.

6.2 Smart Grid Communication: PMU Sensor
Data Transmission

For the second experiment, we reused the signer and verifier bridges

from the previous setup (Fig. 4) to investigate the possibility of

hiding information in signed PMU measurements. Instead of the

NTP server, however, the measurement device employed was a

phasor measurement unit 1133A Power Sentinel by Arbiter Systems,

which broadcasts measurement data or sends it to a specific receiver

(such as a phasor measurement data concentrator). Such devices

are used to measure the phasors of electric current and voltage at

different locations in smart power grids and can send up to 120

packets per second.

In our scenario we used a standard configuration sending 10 pac-

kets per second and added an EdDSA signature to each packet. We

3
https://nacl.cr.yp.to/

https://nacl.cr.yp.to/

used the manufacturer’s proprietary PowerSentinelCSV protocol,

which transmits 10 UDP packets of measurement data per second

achieving 310 B/s of subliminal bandwidth. In principle the same

bandwidth could also be achieved using other protocols such as

IEEE C37.118, defined for PMU data transmission, if available on

the devices.

6.3 Security Protocol: Key Recovery for TLS 1.2
We examined the EdDSA subliminal channel in TLS from Section 5.3

by using a setup consisting of an nginx 1.13.0
4
webserver and

a simple HTTP client application, both compiled with Google’s

OpenSSL fork BoringSSL
5
which supports Ed25519 as well as the

current TLS 1.3 draft. Similarly to the extension of NaCl in the two

previous experiments, we extended the functionality of BoringSSL

by a routine to perform finite field subtractions. Furthermore, minor

code modifications were conducted to allow the nginx webserver

to use TLS 1.3.

Given these modifications, Eq. (4) was implemented in order to

recover the subliminal information, which worked as expected for

both TLS 1.2 and TLS 1.3 with a bandwidth of 31 B per handshake
6
.

Table 2 provides a summary of the measurement results for all three

scenarios. Especially with the transmission of sensor data a high

amount of subliminal data can be included.

Considering TLS 1.2, an example of information that may be

transmitted using this subliminal channel is keying material, which

allows a passive eavesdropper to decrypt the data meant to be pro-

tected by TLS. Another scenario is leaking information. In this case,

the method yields advantages to an adversary as, if done properly,

no anomaly detection technique will detect the information flow.

Furthermore, it is noteworthy that, in normal protocol operation

the signed data will never be the same for two handshakes, since

random values from both server and client are included, which

further reduces the risk of detection.

Table 2: Measurement results for all three scenarios.

Scenario Bandwidth

NTP broadcasts max. 3.9 B/s

PMU measurements 310 B/s

TLS handshake bidirectionally 31 B

7 APPROACHES TO MITIGATE SUBLIMINAL
COMMUNICATION

Some approaches that aim at mitigating or at least detecting su-

bliminal communication have been published for other signature

schemes. In this section, we investigate whether any of these met-

hods can be applied to protect EdDSA signatures against the esta-

blishment of subliminal channels.

4
http://nginx.org/

5
https://boringssl.googlesource.com/boringssl/

6
In a practical scenario it has to be taken into account that session resumption is used

if many subsequent connections occur. In this case, the achievable bandwidth would

be lower.

Secret key

Public key

Arbitrary communication
allowed

Sender

Receiver

Warden

Direct communication
prevented

Figure 5: Warden scenario to achieve subliminal-freeness.

In order to elaborate on mitigation possibilities, we introduce a

’warden’ to the subliminal channel scenario established in Section 4

(see Fig. 5). The warden is a trusted instance that is located between

signer and receiver
7
and tries to detect or prevent the transmission

of subliminal information. This directly relates to the scenario in

the original publication by Simmons [2] introduced in Section 2,

where prisoners can only communicate in an unencrypted but

authenticated manner. All communication is supervised by a prison

employee, the warden, who may passively monitor or actively

modify the communication. When using a subliminal channel, the

prisoner needs to ensure that the warden is not able to detect the

misuse of the signature. Since the subliminal channel in EdDSA

proposed in this paper is employed in the random number used to

generate the signature, the verification process in general would

not show any irregularities. Nevertheless, under certain conditions

(described below) the existence of a subliminal channel may be

suspected though.

7.1 Ensuring Subliminal-Free Signatures
In some situations it is possible to ensure that no subliminal infor-

mation is embedded in a signature. This is possible for signature

schemes that allow only a single valid signature for a given message.

As pointed out by Bohli, Vasco, and Steinwandt, however, it is also

possible to achieve subliminal-freeness, if the signer can prove to

the warden that the signature has been created in a way that only

permits one valid signature [6]. In this case, the warden must have

the power to discard invalid messages.

7.1.1 Pre-published Nonce Points. Using a setting where the

warden can discard (invalid) messages, the simplest solution is to

require the signer to generate and publish a list of R-values before
the signer knows the information that is to be transmitted clandes-

tinely during the signing process. During signature generation, the

signer has to use the values in the same order as they appear in

7
The logical instance of a warden may also be co-located with the receiver.

http://nginx.org/
https://boringssl.googlesource.com/boringssl/

the list. With the nonce r being fixed a priori the signature beco-

mes indeed unique in the sense that for a given message just one

possible value for S remains. A variant of this approach would be

to index the list by a number derived deterministically from the

message. However, this causes an increasing number of messages

to be unsignable as the corresponing signature would require a

nonce that was already used earlier and would therefore make the

signature reveal the signing key.

This approach has several disadvantages. First of all, due to the

limited number of usable R-values, the number of distinct messages

that can be signed is equally limited. When using the indexed

variant, this is even more serious, as the number of unsignable

messages would become significantly large once a certain amount

of values has been used. Secondly, the warden needs to store the

list of R-values, which may lead to significant storage requirements.

For each message the signer may sign, 32 B storage are required.

The most important drawback is the fact that also the transmission

of the list of R-values provides a way for embedding subliminal

information. Therefore, a subliminal channel is just shifted to an

earlier time instant.

7.1.2 Warden Interaction. Zhang et al. proposed an interactive

scheme (based on Schnorr signatures) for subliminal-free signing, in

which the warden actively contributes to signature generation [29].

To prevent a subliminal channel, a total of six messages has to

be exchanged between signer and warden for each signature. The

scheme is shown to be secure against existential forgery if the

computational Diffie-Hellman assumption holds. Furthermore, em-

bedding subliminal information in the signature is shown to be as

hard as computing discrete logarithms on behalf of the signer.

Since the EdDSA scheme is derived from Schnorr signatures, the

mitigation strategy is applicable also to EdDSA. Nevertheless, the

major drawbacks of the scheme are the large number of messages

to be exchanged and the computational effort required both at the

signer and at the warden in order to generate signatures. These

drawbacks conflict substantially with the requirements in typical

scenarios where EdDSA can be employed: low computational effort,

fast signing and verification, and small overhead (and sometimes

even only unidirectional communication).

7.1.3 Zero-knowledge Proofs. Bohli, Vasco, and Steinwandt des-

cribed a provably subliminal-free signature scheme that does not

require active participation of the warden [6]. Instead, the random

number r required by the signature scheme is generated determinis-

tically from the message and a proof is given to the warden that the

value has indeed been derived correctly without providing means

to the warden for deriving that value on behalf of the sender. This is

accomplished using Naor and Reingold’s pseudo random function

[30]:

fp,q,a (x) = д
a0

∏
1≤i≤m,xi =1 ai . (5)

Here, p and q are prime numbers with q |p − 1 and д ∈ Z∗p is the

generator of a cyclic group of order q. x ∈ {0, 1}m is the seed for

the random number, which in our case is a hash of the message

with appropriate lengthm ∈ N. a ∈ Zmq is chosen at random by

the signer during key generation and can be regarded as a secret

key for signature generation. These values are chosen once for all

signatures, and all values are transmitted to the warden, except for

a, for which only commitments are transmitted. Using this con-

struction zero-knowledge proofs are derived, which prove that the

signature has been computed deterministically from the message’s

hash. The proof itself is not guaranteed to be subliminal-free and,

hence, must be stripped off by the warden after verification.

This provably subliminal-free signature scheme is formulated

for ECDSA. Since it solves the general problem of showing that a

curve point has been generated according to some specific method

from the message without disclosing the point’s discrete logarithm,

however, it can be equally applied to EdDSA. Compared to the

previous interactive approach, the approach has the advantage of

simplifying the communication pattern between signer and war-

den. Bohli, Vasco, and Steinwandt proposed to use the scheme for

passports where it should be possible for the passport’s holder to

make sure that the issuing party has not embedded information in

the signature. Since one proof (for a security level of 128 bit) takes

several megabytes, the bandwidth requirements between signer

and warden are high though – too high in the context of network

protocols.

Alternatively, if the requirements for the warden are relaxed to

being able to prove the existence of a subliminal channel when

examining a random sample of signed messages, the scheme can

also be used for a scenario where it is not feasible to place a warden

in a man-in-the-middle position: The signer can be obliged to offer

the proofs for the generated signatures on a protected interface.

A signature that has been intercepted unnoticeably can then be

tested for having been generated validly. In this scenario the signer

does not have to compute and store the proofs for all signatures,

which would cause very high storage requirements. Instead, when

requesting a proof the warden can provide the signer with the

message in question, which suffices to reproduce the signature and

generate the corresponding proof. In this case, however, the signer

must make sure that the warden already has a valid signature for

the message, as he would otherwise sign arbitrary messages on

behalf of the warden.

Table 3 summarizes the three distinct approaches that mitigate

subliminal communication with respect to their advantages and

drawbacks.

7.2 Detecting Subliminal Communication
Although EdDSA cannot be made subliminal-free (without introdu-

cing serious disadvantages), there may still exist ways to detect the

subliminal data transfer or at least to check whether subliminal data

exchange can be suspected. In this section, we highlight situations

in which the subliminal channel can lead to observable suspicious

patterns that help to detect the transmission of subliminal informa-

tion.

7.2.1 Identical Messages. Due to the deterministic calculation

of r , a specific message produces the same signature independent

of how often the message is transmitted. If the same message is

transmitted twice and r has not been derived from the messages

but carries (two distinct) subliminal messages, this can be detected

by the fact that the signatures differ although the messages are

identical. A warden who monitors the communication can notice

that two signatures are different although they were generated for

identical messages using the same key pair. From this observation,

Table 3: Approaches to ensure subliminal-freeness in EdDSA.

Approach Applicability Advantages and drawbacks

Pre-published nonce points DSA-like and Schnorr signatures + Simple

+ Low computational requirements

- Limited number of transmitted messages

- Subliminal information embeddable during list computation

- Storage requirements for warden

Warden interaction [29] Schnorr signatures + Small bandwidth requirements

- Participation of warden required

- Several messages need to be exchanged

- Need for bidirectional communication

- Subliminal channel to/from warden possible

Zero-knowledge proofs [6] Proving pseudorandomness of a

curve point

+ Simple communication pattern

+ Feasible for offline scenarios

- Huge prove size

- Significant computational requirements

- Subliminal channel to warden possible

the warden may then deduce that subliminal information has been

transferred. In order to prevent this a subliminal sender would need

to check if an identical message has been sent before. If this is the

case, the same value r should be used to not raise suspicion. The

subliminal receiver can just discard any subliminal information

received in duplicated messages. Obviously, this method increases

storage requirements for both, subliminal sender and subliminal

receiver, significantly.

7.2.2 Small Nonce Values. As described in Section 3, it is of

utmost importance for the security of the signature system to sus-

tain unpredictability of the nonce value r . However, when directly

encoding the (unencrypted) subliminal information into r , it may

regularly take small values or even become equal to zero, depending

on the subliminal information that is being transmitted. Detection

of such values can, therefore, not only lead to detection of the su-

bliminal channel, but also allow an eavesdropper to recover the

signing keya. The sender of the subliminal information canmitigate

this problem, though, by encrypting the subliminal information.

In fact, encryption is often performed for covert and subliminal

channels to prevent others from being able to read the transferred

information in case the channel is detected. It is important to note,

however, that unlike signature schemes that consume true rand-

omness, encryption in this case cannot prevent detection of the

subliminal channel in case that someone knows the secret key k
(e.g., in a special administratory position). In this case the secret

key k together with the message can be used to verify if r has been
computed conforming to Eq. (2).

7.2.3 Repeating Nonce Values. As explained in Section 3, the

signing key can be recovered from signatures with distinct mes-

sages which are using the same nonce value r . The sender of the
subliminal information therefore has to ensure that this case does

not occur if r is used for subliminal information instead of calcu-

lating it from the message. Depending on the type of information

that is to be transmitted covertly, repeating values of r might occur

especially if naive encryption methods are used. To counter this

problem, the initialization vector for encryption of the covert in-

formation should be derived from the overt message in a manner

similar to Eq. (2). Additionally, the output feedback (OFB) mode of

block ciphers can be used to significantly reduce the probability of

reoccurring random values [31].

8 CONCLUSION
In this paper, we conducted a theoretical analysis of EdDSA and

identified a way to inject a subliminal channel in EdDSA signatures.

The efficiency of the subliminal channel is substantial (nearly 50 %).

We investigated several use case for EdDSA, including new appli-

cation areas for high-speed signatures like clock synchronization

and smart grid sensor data collection, as well as classical and recent

versions of TLS. We conducted experimental measurements for

these scenarios in order to show the applicability of the subliminal

channel and measure the actual bandwidth of information that can

be leaked in different use cases through the subliminal channel. We

then validated existing countermeasures against subliminal chan-

nels in other signature schemes for their applicability to EdDSA

and found that none of the countermeasures is viable in the context

of network security. We also proposed some detection methods, but

those also can be circumvented by careful adversaries.

Given the fact that EdDSA is already used in network security

protocols and its use is likely to increase substantially due to its ap-

pealing properties (high performance and small signature size), the

existence of a subliminal channel is a significant threat to informa-

tion security in many scenarios. We conclude that when employing

EdDSA in current or future protocols network operators, security

engineers, as well as protocol designers should be aware of the

existence of the subliminal channel described in this paper and

about the limitations of potential countermeasures. If a subliminal

channel cannot be tolerated in the target scenario, either a different,

subliminal-free signature scheme (with potentially less attractive

properties) should be employed instead or significant resources

are required to check that the subliminal channel is not actively

exploited.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their

valuable suggestions.

REFERENCES
[1] Daniel J. Bernstein et al. “High-speed high-security signatu-

res”. In: International Workshop on Cryptographic Hardware
and Embedded Systems. Springer, 2011, pp. 124–142.

[2] Gustavus J. Simmons. “The Prisoners’ Problem and the Subli-

minal Channel”. en. In:Advances in Cryptology. DOI: 10.1007/978-
1-4684-4730-9_5. Springer US, 1984, pp. 51–67. isbn: 978-1-

4684-4732-3 978-1-4684-4730-9.

[3] Gustavus J. Simmons. “Subliminal Communication is Easy

Using the DSA”. In: Advances in Cryptology — EUROCRYPT
’93: Workshop on the Theory and Application of Cryptographic
Techniques Lofthus. Springer BerlinHeidelberg, 1994, pp. 218–
232. isbn: 978-3-540-48285-7. doi: 10.1007/3-540-48285-7_18.

[4] Ross Anderson et al. “The Newton channel”. In: Informa-
tion Hiding: First International Workshop. Springer Berlin
Heidelberg, 1996, pp. 151–156. isbn: 978-3-540-49589-5. doi:

10.1007/3-540-61996-8_38. url: https://doi.org/10.1007/3-

540-61996-8_38.

[5] Taher ElGamal. “A public key cryptosystem and a signa-

ture scheme based on discrete logarithms”. In: Advances in
cryptology. Springer. 1985, pp. 10–18.

[6] Jens-Matthias Bohli, Maria Isabel Gonzalez Vasco, and Rai-

ner Steinwandt. “A subliminal-free variant of ECDSA”. In:

International Workshop on Information Hiding. Springer, 2006,
pp. 375–387.

[7] Q. Dong and G. Xiao. “A Subliminal-Free Variant of ECDSA

Using Interactive Protocol”. In: 2010 International Conference
on E-Product E-Service and E-Entertainment. Nov. 2010, pp. 1–
3. doi: 10.1109/ICEEE.2010.5660874.

[8] Don Johnson, Alfred Menezes, and Scott Vanstone. “The

elliptic curve digital signature algorithm (ECDSA)”. In: In-
ternational Journal of Information Security 1.1 (2001), pp. 36–

63.

[9] Xianfeng Zhao and Ning Li. “Reversible Watermarking with

Subliminal Channel”. In: Information Hiding: 10th Interna-
tional Workshop, IH 2008. Springer Berlin Heidelberg, 2008,

pp. 118–131. isbn: 978-3-540-88961-8. doi: 10.1007/978-3-

540-88961-8_9.

[10] Jens-Matthias Bohli and Rainer Steinwandt. “On Subliminal

Channels in Deterministic Signature Schemes”. In: 7th Inter-
national Conference on Information Security and Cryptology
– ICISC 2004. Springer Berlin Heidelberg, 2005, pp. 182–194.

isbn: 978-3-540-32083-8. doi: 10.1007/11496618_14.

[11] Ronald L. Rivest, Adi Shamir, and Len Adleman. “A method

for obtaining digital signatures and public-key cryptosys-

tems”. In: Communications of the ACM 21.2 (1978), pp. 120–

126.

[12] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed

Records”. In: 9th International Conference on Theory and
Practice in Public-Key Cryptography (PKC 2006). Springer
Berlin Heidelberg, 2006, pp. 207–228. isbn: 978-3-540-33852-

9. doi: 10.1007/11745853_14.

[13] S. Josefsson and I. Liusvaara. Edwards-Curve Digital Signa-
ture Algorithm (EdDSA). RFC 8032 (Informational). Internet

Engineering Task Force, Jan. 2017. url: http://www.ietf.org/

rfc/rfc8032.txt.

[14] Mike Hamburg. Ed448-Goldilocks, a new elliptic curve. Cryp-
tology ePrint Archive, Report 2015/625. http://eprint.iacr.

org/2015/625. 2015.

[15] Claus P. Schnorr. “Efficient Identification and Signatures for

Smart Cards”. In: Advances in Cryptology - CRYPTO ’89. New
York: Springer, 1990, pp. 239–252.

[16] Robert Annessi, Joachim Fabini, and Tanja Zseby. Secure-
Time: Secure Multicast Time Synchronization. 2017. eprint:
arXiv:1705.10669.

[17] E. Itkin and A. Wool. “A security analysis and revised se-

curity extension for the precision time protocol”. In: IEEE

International Symposium on Precision Clock Synchroniza-

tion for Measurement, Control, and Communication (ISPCS).

Sept. 2016, pp. 1–6. doi: 10.1109/ISPCS.2016.7579501.

[18] Eyal Itkin and Avishai Wool. A Security Analysis and Revised
Security Extension for the Precision Time Protocol. 2016. eprint:
arXiv:1603.00707.

[19] Ik Rae Jeong et al. “Provably Secure Encrypt-then-Sign Com-

position in Hybrid Signcryption”. In: Information Security
and Cryptology — ICISC 2002: 5th International Conference
Seoul, Korea, November 28–29, 2002 Revised Papers. Ed. by Pil

Joong Lee and Chae Hoon Lim. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2003, pp. 16–34. isbn: 978-3-540-36552-5.

doi: 10.1007/3-540-36552-4_2. url: https://doi.org/10.1007/3-

540-36552-4_2.

[20] Yoav Nir, Simon Josefsson, and Manuel Pegourie-Gonnard.

Elliptic Curve Cryptography (ECC) Cipher Suites for Transport
Layer Security (TLS) Versions 1.2 and Earlier. Internet-Draft
draft-ietf-tls-rfc4492bis-17. http://www.ietf.org/internet-

drafts/draft-ietf-tls-rfc4492bis-17.txt. IETF Secretariat, May

2017. url: http://www.ietf.org/internet-drafts/draft-ietf-tls-

rfc4492bis-17.txt.

[21] T. Dierks and E. Rescorla. The Transport Layer Security (TLS)
Protocol Version 1.2. RFC 5246. http://www.rfc-editor.org/

rfc/rfc5246.txt. RFC Editor, Aug. 2008. url: http://www.rfc-

editor.org/rfc/rfc5246.txt.

[22] Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.3. Internet-Draft draft-ietf-tls-tls13-20. http://www.

ietf .org/internet- drafts/draft- ietf- tls- tls13- 20.txt. IETF

Secretariat, Apr. 2017. url: http://www.ietf.org/internet-

drafts/draft-ietf-tls-tls13-20.txt.

[23] Eu-Jin Goh et al. “TheDesign and Implementation of Protocol-

Based Hidden Key Recovery”. en. In: Information Security.
Lecture Notes in Computer Science 2851. DOI: 10.1007/10958513_13.

Springer Berlin Heidelberg, Oct. 2003, pp. 165–179. isbn: 978-

3-540-20176-2 978-3-540-39981-0.

https://doi.org/10.1007/3-540-48285-7_18
https://doi.org/10.1007/3-540-61996-8_38
https://doi.org/10.1007/3-540-61996-8_38
https://doi.org/10.1007/3-540-61996-8_38
https://doi.org/10.1109/ICEEE.2010.5660874
https://doi.org/10.1007/978-3-540-88961-8_9
https://doi.org/10.1007/978-3-540-88961-8_9
https://doi.org/10.1007/11496618_14
https://doi.org/10.1007/11745853_14
http://www.ietf.org/rfc/rfc8032.txt
http://www.ietf.org/rfc/rfc8032.txt
http://eprint.iacr.org/2015/625
http://eprint.iacr.org/2015/625
arXiv:1705.10669
https://doi.org/10.1109/ISPCS.2016.7579501
arXiv:1603.00707
https://doi.org/10.1007/3-540-36552-4_2
https://doi.org/10.1007/3-540-36552-4_2
https://doi.org/10.1007/3-540-36552-4_2
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4492bis-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4492bis-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4492bis-17.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-rfc4492bis-17.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.rfc-editor.org/rfc/rfc5246.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-20.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-20.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-20.txt
http://www.ietf.org/internet-drafts/draft-ietf-tls-tls13-20.txt

[24] Justin Merrill and Daryl Johnson. “Covert Channels in SSL

Session Negotiation Headers”. In: Proceedings of the Interna-
tional Conference on Security and Management (SAM). The
Steering Committee of The World Congress in Computer

Science, Computer Engineering and Applied Computing

(WorldComp), 2015, p. 70.

[25] Carlos Scott. Network covert channels: Review of current state
and analysis of viability of the use of x. 509 certificates for co-
vert communications. Tech. rep. RHUL-MA-2008-11, Depart-

ment of Mathematics, Roal Holloway, University of London

(January 2008), 2008.

[26] ZbigniewGołȩbiewski,MirosławKutyłowski, and Filip Zagór-

ski. “Stealing secrets with SSL/TLS and SSH – Kleptographic

attacks”. In: International Conference on Cryptology and Net-
work Security. Springer, 2006, pp. 191–202.

[27] Adam L. Young and Moti M. Yung. “Space-Efficient Klepto-

graphyWithout RandomOracles”. en. In: Information Hiding.

DOI: 10.1007/978-3-540-77370-2_8. Springer Berlin Heidel-

berg, June 2007, pp. 112–129.

[28] O. Sury and R. Edmonds. Edwards-Curve Digital Security
Algorithm (EdDSA) for DNSSEC. RFC 8080 (Proposed Stan-

dard). Internet Engineering Task Force, Feb. 2017. url: http:

//www.ietf.org/rfc/rfc8080.txt.

[29] Yinghui Zhang et al. “Provably secure and subliminal-free

variant of schnorr signature”. In: Information and communi-
cation technology-EurAsia conference. Springer, 2013, pp. 383–
391.

[30] M. Naor and O. Reingold. “Number-theoretic constructions

of efficient pseudo-random functions”. In: Proceedings 38th
Annual Symposium on Foundations of Computer Science. Oct.
1997, pp. 458–467. doi: 10.1109/SFCS.1997.646134.

[31] Alfred JMenezes, Paul C VanOorschot, and Scott AVanstone.

Handbook of applied cryptography. CRC press, 1996.

http://www.ietf.org/rfc/rfc8080.txt
http://www.ietf.org/rfc/rfc8080.txt
https://doi.org/10.1109/SFCS.1997.646134

	Abstract
	1 Introduction
	2 Related Work
	3 The EdDSA Signature Scheme
	4 Subliminal Channels in EdDSA
	4.1 The Broadband Channel
	4.2 A Narrowband Channel

	5 Attack Scenarios
	5.1 Broadcast Clock Synchronization
	5.2 Smart Grid Sensor Data
	5.3 Network Security Protocols
	5.4 Further Attack Scenarios

	6 Measurement Results
	6.1 Clock Synchronization: Signed NTP
	6.2 Smart Grid Communication: PMU Sensor Data Transmission
	6.3 Security Protocol: Key Recovery for TLS 1.2

	7 Approaches to Mitigate Subliminal Communication
	7.1 Ensuring Subliminal-Free Signatures
	7.2 Detecting Subliminal Communication

	8 Conclusion
	Acknowledgments

